Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1704.00445
Cited By
On Kernelized Multi-armed Bandits
3 April 2017
Sayak Ray Chowdhury
Aditya Gopalan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Kernelized Multi-armed Bandits"
50 / 117 papers shown
Title
Game-theoretic statistics and safe anytime-valid inference
Aaditya Ramdas
Peter Grünwald
V. Vovk
Glenn Shafer
40
119
0
04 Oct 2022
Batch Bayesian optimisation via density-ratio estimation with guarantees
Rafael Oliveira
Louis C. Tiao
Fabio Ramos
47
7
0
22 Sep 2022
A Nonparametric Contextual Bandit with Arm-level Eligibility Control for Customer Service Routing
Ruofeng Wen
Wenjun Zeng
Yi Liu
26
0
0
08 Sep 2022
Event-Triggered Time-Varying Bayesian Optimization
Paul Brunzema
Alexander von Rohr
Friedrich Solowjow
Sebastian Trimpe
21
7
0
23 Aug 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Exploration in Linear Bandits with Rich Action Sets and its Implications for Inference
Debangshu Banerjee
Avishek Ghosh
Sayak Ray Chowdhury
Aditya Gopalan
35
9
0
23 Jul 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
39
6
0
16 Jul 2022
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings
Masatoshi Uehara
Ayush Sekhari
Jason D. Lee
Nathan Kallus
Wen Sun
60
6
0
24 Jun 2022
Surrogate modeling for Bayesian optimization beyond a single Gaussian process
Qin Lu
Konstantinos D. Polyzos
Bingcong Li
G. Giannakis
GP
22
18
0
27 May 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
33
4
0
10 May 2022
Provably Efficient Kernelized Q-Learning
Shuang Liu
H. Su
MLT
27
4
0
21 Apr 2022
Instance-Dependent Regret Analysis of Kernelized Bandits
S. Shekhar
T. Javidi
27
3
0
12 Mar 2022
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
46
5
0
17 Feb 2022
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
24
3
0
11 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
33
18
0
08 Feb 2022
GoSafeOpt: Scalable Safe Exploration for Global Optimization of Dynamical Systems
Bhavya Sukhija
M. Turchetta
David Lindner
Andreas Krause
Sebastian Trimpe
Dominik Baumann
31
17
0
24 Jan 2022
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
42
0
09 Nov 2021
Risk-averse Heteroscedastic Bayesian Optimization
A. Makarova
Ilnura N. Usmanova
Ilija Bogunovic
Andreas Krause
16
35
0
05 Nov 2021
Empirical analysis of representation learning and exploration in neural kernel bandits
Michal Lisicki
Arash Afkanpour
Graham W. Taylor
18
0
0
05 Nov 2021
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin G. Jamieson
Robert D. Nowak
Lalit P. Jain
30
22
0
02 Nov 2021
Collaborative Pure Exploration in Kernel Bandit
Yihan Du
Wei Chen
Yuko Kuroki
Longbo Huang
40
10
0
29 Oct 2021
Differentially Private Federated Bayesian Optimization with Distributed Exploration
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
18
41
0
27 Oct 2021
Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment
Eli Ben-Michael
D. J. Greiner
Kosuke Imai
Zhichao Jiang
OffRL
33
22
0
22 Sep 2021
Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for Safety-Critical Applications
A. Capone
Armin Lederer
Sandra Hirche
32
18
0
06 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
34
51
0
20 Aug 2021
Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning
Barna Pásztor
Ilija Bogunovic
Andreas Krause
28
41
0
08 Jul 2021
Neural Active Learning with Performance Guarantees
Pranjal Awasthi
Christoph Dann
Claudio Gentile
Ayush Sekhari
Zhilei Wang
32
22
0
06 Jun 2021
Bayesian Optimistic Optimisation with Exponentially Decaying Regret
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
16
3
0
10 May 2021
Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees
Christian Fiedler
C. Scherer
Sebastian Trimpe
24
15
0
07 May 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
26
65
0
06 May 2021
Distributed Bayesian Online Learning for Cooperative Manipulation
P. B. G. Dohmann
Armin Lederer
Marcel Dissemond
Sandra Hirche
OffRL
19
5
0
09 Apr 2021
Combining Pessimism with Optimism for Robust and Efficient Model-Based Deep Reinforcement Learning
Sebastian Curi
Ilija Bogunovic
Andreas Krause
39
17
0
18 Mar 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
22
13
0
24 Feb 2021
Is Pessimism Provably Efficient for Offline RL?
Ying Jin
Zhuoran Yang
Zhaoran Wang
OffRL
27
349
0
30 Dec 2020
Policy Optimization as Online Learning with Mediator Feedback
Alberto Maria Metelli
Matteo Papini
P. DÓro
Marcello Restelli
OffRL
27
10
0
15 Dec 2020
Gaussian Process-based Min-norm Stabilizing Controller for Control-Affine Systems with Uncertain Input Effects and Dynamics
F. Castañeda
Jason J. Choi
Bike Zhang
Claire Tomlin
Koushil Sreenath
34
38
0
14 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
39
18
0
09 Nov 2020
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
16
24
0
13 Oct 2020
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
34
115
0
02 Oct 2020
Mean-Variance Analysis in Bayesian Optimization under Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
34
33
0
17 Sep 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
25
128
0
15 Sep 2020
IntelligentPooling: Practical Thompson Sampling for mHealth
Sabina Tomkins
Peng Liao
P. Klasnja
S. Murphy
34
30
0
31 Jul 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
33
82
0
15 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling
Qin Ding
Cho-Jui Hsieh
James Sharpnack
25
37
0
07 Jun 2020
Bayesian optimization for modular black-box systems with switching costs
Chi-Heng Lin
Joseph D. Miano
Eva L. Dyer
8
5
0
04 Jun 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
30
51
0
04 Mar 2020
Information Directed Sampling for Linear Partial Monitoring
Johannes Kirschner
Tor Lattimore
Andreas Krause
24
46
0
25 Feb 2020
Rapidly Personalizing Mobile Health Treatment Policies with Limited Data
Sabina Tomkins
Peng Liao
P. Klasnja
Serena Yeung
S. Murphy
44
6
0
23 Feb 2020
Previous
1
2
3
Next