ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02801
  4. Cited By
Bayesian Inference of Individualized Treatment Effects using Multi-task
  Gaussian Processes

Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes

10 April 2017
Ahmed Alaa
M. Schaar
    CML
ArXivPDFHTML

Papers citing "Bayesian Inference of Individualized Treatment Effects using Multi-task Gaussian Processes"

40 / 40 papers shown
Title
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Enhancing Treatment Effect Estimation via Active Learning: A Counterfactual Covering Perspective
Hechuan Wen
Tong Chen
Mingming Gong
Li Kheng Chai
S. Sadiq
Hongzhi Yin
CML
56
0
0
08 May 2025
Conformal Inference of Individual Treatment Effects Using Conditional Density Estimates
Baozhen Wang
Xingye Qiao
50
1
0
28 Jan 2025
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data
A Deep Subgrouping Framework for Precision Drug Repurposing via Emulating Clinical Trials on Real-world Patient Data
Seungyeon Lee
Ruoqi Liu
Feixiong Cheng
Ping Zhang
16
0
0
31 Dec 2024
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
New User Event Prediction Through the Lens of Causal Inference
New User Event Prediction Through the Lens of Causal Inference
H. Yuchi
Shixiang Zhu
Li Dong
Yigit M. Arisoy
Matthew C. Spencer
32
0
0
08 Jul 2024
Conformal Counterfactual Inference under Hidden Confounding
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
30
2
0
20 May 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average
  Treatment Effects
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
29
1
0
05 Mar 2024
Federated Learning for Estimating Heterogeneous Treatment Effects
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
22
2
0
27 Feb 2024
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
27
9
0
19 Nov 2023
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual
  Inference
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference
Yonghe Zhao
Q. Huang
Siwei Wu
Yun Peng
H. Sun
BDL
CML
14
0
0
02 Aug 2023
Improving Open-Domain Dialogue Evaluation with a Causal Inference Model
Improving Open-Domain Dialogue Evaluation with a Causal Inference Model
Cat P. Le
Luke Dai
Michael Johnston
Yang Liu
M. Walker
R. Ghanadan
ELM
19
10
0
31 Jan 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
16
4
0
26 Jan 2023
Doubly Robust Counterfactual Classification
Doubly Robust Counterfactual Classification
K. Kim
Edward H. Kennedy
J. Zubizarreta
OffRL
30
5
0
15 Jan 2023
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
  Treatment Perspective
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple Treatment Perspective
Pengfei Xi
Guifeng Wang
Zhipeng Hu
Yu Xiong
Ming‐Fu Gong
...
Runze Wu
Yu-qiong Ding
Tangjie Lv
Changjie Fan
Xiangnan Feng
CML
AI4TS
AI4CE
13
0
0
17 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
10
1
0
20 Nov 2022
Robust Causal Learning for the Estimation of Average Treatment Effects
Robust Causal Learning for the Estimation of Average Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Xing Yan
Qi Wu
Shumin Ma
Zhiri Yuan
DongDong Wang
Zhixiang Huang
OOD
CML
18
7
0
05 Sep 2022
Interpretable Deep Causal Learning for Moderation Effects
Interpretable Deep Causal Learning for Moderation Effects
A. Caron
G. Baio
I. Manolopoulou
CML
OOD
17
2
0
21 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
15
15
0
16 Jun 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
17
52
0
16 Jun 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
11
2
0
06 Jun 2022
Unsupervised Probabilistic Models for Sequential Electronic Health
  Records
Unsupervised Probabilistic Models for Sequential Electronic Health Records
Alan Kaplan
John D Greene
Vincent X. Liu
Priyadip Ray
13
2
0
15 Apr 2022
Combining Observational and Randomized Data for Estimating Heterogeneous
  Treatment Effects
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
36
29
0
25 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
16
29
0
02 Feb 2022
BITES: Balanced Individual Treatment Effect for Survival data
BITES: Balanced Individual Treatment Effect for Survival data
Stefan Schrod
Andreas Schäfer
S. Solbrig
R. Lohmayer
W. Gronwald
P. Oefner
T. Beissbarth
Rainer Spang
H. Zacharias
Michael Altenbuchinger
CML
15
22
0
05 Jan 2022
Enhancing Counterfactual Classification via Self-Training
Enhancing Counterfactual Classification via Self-Training
Ruijiang Gao
Max Biggs
Wei-Ju Sun
Ligong Han
CML
OffRL
13
6
0
08 Dec 2021
Cycle-Balanced Representation Learning For Counterfactual Inference
Cycle-Balanced Representation Learning For Counterfactual Inference
Guanglin Zhou
L. Yao
Xiwei Xu
Chen Wang
Liming Zhu
CML
OOD
12
12
0
29 Oct 2021
$β$-Intact-VAE: Identifying and Estimating Causal Effects under
  Limited Overlap
βββ-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
27
14
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
15
3
0
30 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
11
16
0
04 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal
  Assumptions
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
8
26
0
27 Aug 2021
Identifiable Energy-based Representations: An Application to Estimating
  Heterogeneous Causal Effects
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
13
5
0
06 Aug 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG
  Knowledge
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
21
12
0
22 Jun 2021
Learning from Counterfactual Links for Link Prediction
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng-Long Jiang
CML
OOD
15
93
0
03 Jun 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of
  Treatments
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
11
16
0
20 Mar 2021
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under
  Hidden Confounding
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Andrew Jesson
Sören Mindermann
Y. Gal
Uri Shalit
CML
8
53
0
08 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean
  Embeddings and U-Statistic Regression
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
13
31
0
16 Feb 2021
Estimating Individual Treatment Effects using Non-Parametric Regression
  Models: a Review
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
21
52
0
14 Sep 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
19
178
0
11 Jun 2020
Estimating the Effects of Continuous-valued Interventions using
  Generative Adversarial Networks
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
15
105
0
27 Feb 2020
A Bayesian Nonparametric Approach for Estimating Individualized
  Treatment-Response Curves
A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves
Yanbo Xu
Yanxun Xu
S. Saria
CML
51
40
0
18 Aug 2016
1