ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1704.02916
  4. Cited By
Reinterpreting Importance-Weighted Autoencoders

Reinterpreting Importance-Weighted Autoencoders

10 April 2017
Chris Cremer
Q. Morris
David Duvenaud
    BDL
    FAtt
ArXivPDFHTML

Papers citing "Reinterpreting Importance-Weighted Autoencoders"

34 / 34 papers shown
Title
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
48
2
0
05 Mar 2024
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
24
2
0
18 May 2023
U-Statistics for Importance-Weighted Variational Inference
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Tighter Variational Bounds are Not Necessarily Better. A Research Report
  on Implementation, Ablation Study, and Extensions
Tighter Variational Bounds are Not Necessarily Better. A Research Report on Implementation, Ablation Study, and Extensions
Amine MĆharrak
Vít Ruzicka
Sangyun Shin
M. Vankadari
DRL
16
0
0
23 Sep 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
Variational Sparse Coding with Learned Thresholding
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
36
7
0
07 May 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical
  Models
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
29
5
0
08 Mar 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
32
47
0
08 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of
  Coregionalization
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
34
14
0
20 Sep 2021
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
MCMC Variational Inference via Uncorrected Hamiltonian Annealing
Tomas Geffner
Justin Domke
33
34
0
08 Jul 2021
Decomposed Mutual Information Estimation for Contrastive Representation
  Learning
Decomposed Mutual Information Estimation for Contrastive Representation Learning
Alessandro Sordoni
Nouha Dziri
Hannes Schulz
Geoffrey J. Gordon
Philip Bachman
Rémi Tachet des Combes
SSL
24
30
0
25 Jun 2021
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform
Achille Thin
Yazid Janati
Sylvain Le Corff
Charles Ollion
Arnaud Doucet
Alain Durmus
Eric Moulines
C. Robert
35
7
0
17 Mar 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
11
25
0
22 Feb 2021
Neural Empirical Bayes: Source Distribution Estimation and its
  Applications to Simulation-Based Inference
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
34
27
0
11 Nov 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
32
25
0
14 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic
  Variational Inference
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
22
16
0
01 Jul 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Yingru Liu
Yucheng Xing
Xuewen Yang
Xin Wang
Jing Shi
Di Jin
Zhaoyue Chen
BDL
26
6
0
11 Jun 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
32
266
0
08 Nov 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
26
18
0
24 Jun 2019
Streaming Variational Monte Carlo
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
The Variational Deficiency Bottleneck
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
15
7
0
27 Oct 2018
Active Learning based on Data Uncertainty and Model Sensitivity
Active Learning based on Data Uncertainty and Model Sensitivity
Nutan Chen
Alexej Klushyn
A. Paraschos
Djalel Benbouzid
Patrick van der Smagt
21
17
0
06 Aug 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
25
197
0
13 Feb 2018
Inference Suboptimality in Variational Autoencoders
Inference Suboptimality in Variational Autoencoders
Chris Cremer
Xuechen Li
David Duvenaud
DRL
BDL
33
280
0
10 Jan 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Metrics for Deep Generative Models
Metrics for Deep Generative Models
Nutan Chen
Alexej Klushyn
Richard Kurle
Xueyan Jiang
Justin Bayer
Patrick van der Smagt
SyDa
DRL
31
116
0
03 Nov 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
32
214
0
31 May 2017
1