Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.01166
Cited By
v1
v2
v3 (latest)
Maximizing the information learned from finite data selects a simple model
2 May 2017
Henry H. Mattingly
Mark K. Transtrum
Michael C. Abbott
B. Machta
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Maximizing the information learned from finite data selects a simple model"
8 / 8 papers shown
Title
Playing it safe: information constrains collective betting strategies
P. Fleig
V. Balasubramanian
48
0
0
18 Apr 2023
Far from Asymptopia
Michael C. Abbott
B. Machta
49
2
0
06 May 2022
Deep Reference Priors: What is the best way to pretrain a model?
Yansong Gao
Rahul Ramesh
Pratik Chaudhari
BDL
47
5
0
01 Feb 2022
Statistical aspects of nuclear mass models
Vojtech Kejzlar
L. Neufcourt
W. Nazarewicz
P. Reinhard
36
40
0
11 Feb 2020
Intrinsic regularization effect in Bayesian nonlinear regression scaled by observed data
Satoru Tokuda
Kenji Nagata
M. Okada
152
1
0
05 Jan 2020
Variational Predictive Information Bottleneck
Alexander A. Alemi
53
18
0
23 Oct 2019
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
133
883
0
23 Mar 2018
A scaling law from discrete to continuous solutions of channel capacity problems in the low-noise limit
Michael C. Abbott
B. Machta
34
6
0
25 Oct 2017
1