Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.05264
Cited By
Extending Defensive Distillation
15 May 2017
Nicolas Papernot
Patrick D. McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Extending Defensive Distillation"
28 / 28 papers shown
Title
TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions
Wang YuHang
Junkang Guo
Aolei Liu
Kaihao Wang
Zaitong Wu
Zhenyu Liu
Wenfei Yin
Jian Liu
AAML
50
0
0
02 Mar 2025
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
37
3
0
10 Oct 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
37
49
0
18 May 2023
Adversarial Amendment is the Only Force Capable of Transforming an Enemy into a Friend
Chong Yu
Tao Chen
Zhongxue Gan
AAML
15
1
0
18 May 2023
A Tutorial on Adversarial Learning Attacks and Countermeasures
Cato Pauling
Michael Gimson
Muhammed Qaid
Ahmad Kida
Basel Halak
AAML
17
11
0
21 Feb 2022
Mixing between the Cross Entropy and the Expectation Loss Terms
Barak Battash
Lior Wolf
Tamir Hazan
UQCV
20
0
0
12 Sep 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
34
132
0
14 Feb 2021
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
226
0
26 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
16
22
0
15 Oct 2020
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
36
48
0
02 Sep 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
18
246
0
28 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
REFIT: A Unified Watermark Removal Framework For Deep Learning Systems With Limited Data
Xinyun Chen
Wenxiao Wang
Chris Bender
Yiming Ding
R. Jia
Bo-wen Li
D. Song
AAML
19
106
0
17 Nov 2019
Domain Robustness in Neural Machine Translation
Mathias Müller
Annette Rios Gonzales
Rico Sennrich
13
95
0
08 Nov 2019
Toward Robust Image Classification
Basemah Alshemali
Alta Graham
Jugal Kalita
AAML
29
6
0
19 Sep 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
17
15
0
05 Jun 2019
Testing DNN Image Classifiers for Confusion & Bias Errors
Yuchi Tian
Ziyuan Zhong
Vicente Ordonez
Gail E. Kaiser
Baishakhi Ray
24
52
0
20 May 2019
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
Nhathai Phan
My T. Thai
Han Hu
R. Jin
Tong Sun
Dejing Dou
27
14
0
23 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
L. V. D. van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
25
62
0
05 Mar 2019
Defending Against Universal Perturbations With Shared Adversarial Training
Chaithanya Kumar Mummadi
Thomas Brox
J. H. Metzen
AAML
18
60
0
10 Dec 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
M. Guizani
AAML
19
23
0
06 Nov 2018
Detecting Adversarial Samples for Deep Neural Networks through Mutation Testing
Jingyi Wang
Jun Sun
Peixin Zhang
Xinyu Wang
AAML
19
41
0
14 May 2018
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
14
104
0
01 Nov 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming-Yu Liu
Min Sun
Jia-Bin Huang
AAML
21
48
0
02 Oct 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
25
1,351
0
18 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1