Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.05502
Cited By
The power of deeper networks for expressing natural functions
16 May 2017
David Rolnick
Max Tegmark
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The power of deeper networks for expressing natural functions"
23 / 23 papers shown
Title
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
7
0
0
15 May 2025
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
MOSAIC, acomparison framework for machine learning models
Mattéo Papin
Yann Beaujeault-Taudiere
F. Magniette
VLM
16
0
0
30 Jan 2023
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
26
10
0
21 Oct 2022
Explicitly antisymmetrized neural network layers for variational Monte Carlo simulation
Jeffmin Lin
Gil Goldshlager
Lin Lin
35
22
0
07 Dec 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
21
137
0
18 Apr 2021
Augmenting Deep Classifiers with Polynomial Neural Networks
Grigorios G. Chrysos
Markos Georgopoulos
Jiankang Deng
Jean Kossaifi
Yannis Panagakis
Anima Anandkumar
19
18
0
16 Apr 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
26
14
0
21 Feb 2021
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
50
0
09 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
11
18
0
29 Jun 2020
Deep Residual Mixture Models
Perttu Hämäläinen
Martin Trapp
Tuure Saloheimo
Arno Solin
28
8
0
22 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
41
172
0
23 Apr 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
32
122
0
23 Jun 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
20
182
0
13 Jun 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
28
136
0
10 Apr 2019
Nonlinear Approximation via Compositions
Zuowei Shen
Haizhao Yang
Shijun Zhang
18
92
0
26 Feb 2019
On a Sparse Shortcut Topology of Artificial Neural Networks
Fenglei Fan
Dayang Wang
Hengtao Guo
Qikui Zhu
Pingkun Yan
Ge Wang
Hengyong Yu
38
21
0
22 Nov 2018
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
Chulhee Yun
S. Sra
Ali Jadbabaie
18
117
0
17 Oct 2018
ResNet with one-neuron hidden layers is a Universal Approximator
Hongzhou Lin
Stefanie Jegelka
36
227
0
28 Jun 2018
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
1