Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.06400
Cited By
Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks
18 May 2017
Matthias Plappert
Christian Mandery
Tamim Asfour
3DH
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks"
7 / 7 papers shown
Title
MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model
Wen-Dao Dai
Ling-Hao Chen
Jingbo Wang
Jinpeng Liu
Bo Dai
Yansong Tang
52
54
0
31 Dec 2024
BiPO: Bidirectional Partial Occlusion Network for Text-to-Motion Synthesis
Seong-Eun Hong
Soobin Lim
Juyeong Hwang
Minwook Chang
Hyeongyeop Kang
85
0
0
28 Nov 2024
SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation
Jordan Juravsky
Yunrong Guo
Sanja Fidler
Xue Bin Peng
AI4CE
16
9
0
15 Jul 2024
MoMask: Generative Masked Modeling of 3D Human Motions
Chuan Guo
Yuxuan Mu
Muhammad Gohar Javed
Sen Wang
Li Cheng
VGen
8
113
0
29 Nov 2023
TEMOS: Generating diverse human motions from textual descriptions
Mathis Petrovich
Michael J. Black
Gül Varol
17
365
0
25 Apr 2022
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,435
0
26 Sep 2016
The KIT Motion-Language Dataset
Matthias Plappert
Christian Mandery
Tamim Asfour
166
267
0
13 Jul 2016
1