Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.06908
Cited By
v1
v2
v3
v4
v5 (latest)
Unbiased estimates for linear regression via volume sampling
19 May 2017
Michal Derezinski
Manfred K. Warmuth
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Unbiased estimates for linear regression via volume sampling"
27 / 27 papers shown
Title
Data Selection for ERMs
Steve Hanneke
Shay Moran
Alexander Shlimovich
Amir Yehudayoff
58
0
0
20 Apr 2025
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
85
0
0
07 Mar 2023
One-pass additive-error subset selection for
ℓ
p
\ell_{p}
ℓ
p
subspace approximation
Amit Deshpande
Rameshwar Pratap
64
4
0
26 Apr 2022
Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD
Rémi Bardenet
Subhro Ghosh
Meixia Lin
83
6
0
11 Dec 2021
L1 Regression with Lewis Weights Subsampling
Aditya Parulekar
Advait Parulekar
Eric Price
57
19
0
19 May 2021
Query Complexity of Least Absolute Deviation Regression via Robust Uniform Convergence
Xue Chen
Michal Derezinski
63
31
0
03 Feb 2021
On proportional volume sampling for experimental design in general spaces
Arnaud Poinas
Rémi Bardenet
58
5
0
09 Nov 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
78
81
0
07 May 2020
Kernel interpolation with continuous volume sampling
Ayoub Belhadji
Rémi Bardenet
P. Chainais
54
23
0
22 Feb 2020
Best Principal Submatrix Selection for the Maximum Entropy Sampling Problem: Scalable Algorithms and Performance Guarantees
Yongchun Li
Weijun Xie
33
16
0
23 Jan 2020
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
82
78
0
10 Dec 2019
Flexible Modeling of Diversity with Strongly Log-Concave Distributions
Joshua Robinson
S. Sra
Stefanie Jegelka
56
12
0
12 Jun 2019
Bayesian experimental design using regularized determinantal point processes
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
48
26
0
10 Jun 2019
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
95
55
0
31 May 2019
Distributed estimation of the inverse Hessian by determinantal averaging
Michal Derezinski
Michael W. Mahoney
67
31
0
28 May 2019
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression
Michal Derezinski
K. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
110
25
0
04 Feb 2019
Reverse iterative volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
102
43
0
06 Jun 2018
Proportional Volume Sampling and Approximation Algorithms for A-Optimal Design
Aleksandar Nikolov
Mohit Singh
U. Tantipongpipat
113
48
0
22 Feb 2018
Leveraged volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
Daniel J. Hsu
93
58
0
19 Feb 2018
Active Regression via Linear-Sample Sparsification
Xue Chen
Eric Price
127
62
0
27 Nov 2017
A unified framework for manifold landmarking
Hongteng Xu
Licheng Yu
Mark A. Davenport
H. Zha
40
4
0
25 Oct 2017
Subsampling for Ridge Regression via Regularized Volume Sampling
Michal Derezinski
Manfred K. Warmuth
73
20
0
14 Oct 2017
Linear regression without correspondence
Daniel J. Hsu
K. Shi
Xiaorui Sun
90
83
0
19 May 2017
Polynomial Time Algorithms for Dual Volume Sampling
Chengtao Li
Stefanie Jegelka
S. Sra
54
31
0
08 Mar 2017
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
274
1,141
0
25 Jul 2012
Near-optimal Coresets For Least-Squares Regression
Christos Boutsidis
P. Drineas
M. Magdon-Ismail
155
80
0
16 Feb 2012
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
187
534
0
18 Sep 2011
1