ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.06908
  4. Cited By
Unbiased estimates for linear regression via volume sampling
v1v2v3v4v5 (latest)

Unbiased estimates for linear regression via volume sampling

19 May 2017
Michal Derezinski
Manfred K. Warmuth
ArXiv (abs)PDFHTML

Papers citing "Unbiased estimates for linear regression via volume sampling"

27 / 27 papers shown
Title
Data Selection for ERMs
Data Selection for ERMs
Steve Hanneke
Shay Moran
Alexander Shlimovich
Amir Yehudayoff
58
0
0
20 Apr 2025
PRIMO: Private Regression in Multiple Outcomes
PRIMO: Private Regression in Multiple Outcomes
Seth Neel
85
0
0
07 Mar 2023
One-pass additive-error subset selection for $\ell_{p}$ subspace
  approximation
One-pass additive-error subset selection for ℓp\ell_{p}ℓp​ subspace approximation
Amit Deshpande
Rameshwar Pratap
67
4
0
26 Apr 2022
Determinantal point processes based on orthogonal polynomials for
  sampling minibatches in SGD
Determinantal point processes based on orthogonal polynomials for sampling minibatches in SGD
Rémi Bardenet
Subhro Ghosh
Meixia Lin
83
6
0
11 Dec 2021
L1 Regression with Lewis Weights Subsampling
L1 Regression with Lewis Weights Subsampling
Aditya Parulekar
Advait Parulekar
Eric Price
57
19
0
19 May 2021
Query Complexity of Least Absolute Deviation Regression via Robust
  Uniform Convergence
Query Complexity of Least Absolute Deviation Regression via Robust Uniform Convergence
Xue Chen
Michal Derezinski
63
31
0
03 Feb 2021
On proportional volume sampling for experimental design in general
  spaces
On proportional volume sampling for experimental design in general spaces
Arnaud Poinas
Rémi Bardenet
58
5
0
09 Nov 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
78
81
0
07 May 2020
Kernel interpolation with continuous volume sampling
Kernel interpolation with continuous volume sampling
Ayoub Belhadji
Rémi Bardenet
P. Chainais
54
23
0
22 Feb 2020
Best Principal Submatrix Selection for the Maximum Entropy Sampling
  Problem: Scalable Algorithms and Performance Guarantees
Best Principal Submatrix Selection for the Maximum Entropy Sampling Problem: Scalable Algorithms and Performance Guarantees
Yongchun Li
Weijun Xie
33
16
0
23 Jan 2020
Exact expressions for double descent and implicit regularization via
  surrogate random design
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
82
78
0
10 Dec 2019
Flexible Modeling of Diversity with Strongly Log-Concave Distributions
Flexible Modeling of Diversity with Strongly Log-Concave Distributions
Joshua Robinson
S. Sra
Stefanie Jegelka
56
12
0
12 Jun 2019
Bayesian experimental design using regularized determinantal point
  processes
Bayesian experimental design using regularized determinantal point processes
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
48
26
0
10 Jun 2019
Exact sampling of determinantal point processes with sublinear time
  preprocessing
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
99
55
0
31 May 2019
Distributed estimation of the inverse Hessian by determinantal averaging
Distributed estimation of the inverse Hessian by determinantal averaging
Michal Derezinski
Michael W. Mahoney
67
31
0
28 May 2019
Minimax experimental design: Bridging the gap between statistical and
  worst-case approaches to least squares regression
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression
Michal Derezinski
K. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
113
25
0
04 Feb 2019
Reverse iterative volume sampling for linear regression
Reverse iterative volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
102
43
0
06 Jun 2018
Proportional Volume Sampling and Approximation Algorithms for A-Optimal
  Design
Proportional Volume Sampling and Approximation Algorithms for A-Optimal Design
Aleksandar Nikolov
Mohit Singh
U. Tantipongpipat
115
48
0
22 Feb 2018
Leveraged volume sampling for linear regression
Leveraged volume sampling for linear regression
Michal Derezinski
Manfred K. Warmuth
Daniel J. Hsu
93
58
0
19 Feb 2018
Active Regression via Linear-Sample Sparsification
Active Regression via Linear-Sample Sparsification
Xue Chen
Eric Price
132
62
0
27 Nov 2017
A unified framework for manifold landmarking
A unified framework for manifold landmarking
Hongteng Xu
Licheng Yu
Mark A. Davenport
H. Zha
44
4
0
25 Oct 2017
Subsampling for Ridge Regression via Regularized Volume Sampling
Subsampling for Ridge Regression via Regularized Volume Sampling
Michal Derezinski
Manfred K. Warmuth
73
20
0
14 Oct 2017
Linear regression without correspondence
Linear regression without correspondence
Daniel J. Hsu
K. Shi
Xiaorui Sun
90
83
0
19 May 2017
Polynomial Time Algorithms for Dual Volume Sampling
Polynomial Time Algorithms for Dual Volume Sampling
Chengtao Li
Stefanie Jegelka
S. Sra
54
31
0
08 Mar 2017
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
274
1,141
0
25 Jul 2012
Near-optimal Coresets For Least-Squares Regression
Near-optimal Coresets For Least-Squares Regression
Christos Boutsidis
P. Drineas
M. Magdon-Ismail
155
80
0
16 Feb 2012
Fast approximation of matrix coherence and statistical leverage
Fast approximation of matrix coherence and statistical leverage
P. Drineas
M. Magdon-Ismail
Michael W. Mahoney
David P. Woodruff
192
534
0
18 Sep 2011
1