ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07204
  4. Cited By
Ensemble Adversarial Training: Attacks and Defenses
v1v2v3v4v5 (latest)

Ensemble Adversarial Training: Attacks and Defenses

19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
    AAML
ArXiv (abs)PDFHTML

Papers citing "Ensemble Adversarial Training: Attacks and Defenses"

21 / 1,471 papers shown
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial TrainingInternational Conference on Learning Representations (ICLR), 2017
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
590
914
0
29 Oct 2017
ADA: A Game-Theoretic Perspective on Data Augmentation for Object
  Detection
ADA: A Game-Theoretic Perspective on Data Augmentation for Object Detection
Sima Behpour
Kris Kitani
Brian Ziebart
AAML
134
4
0
21 Oct 2017
Boosting Adversarial Attacks with Momentum
Boosting Adversarial Attacks with Momentum
Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
AAML
297
94
0
17 Oct 2017
Provably Minimally-Distorted Adversarial Examples
Provably Minimally-Distorted Adversarial Examples
Nicholas Carlini
Guy Katz
Clark W. Barrett
D. Dill
AAML
210
91
0
29 Sep 2017
Fooling Vision and Language Models Despite Localization and Attention
  Mechanism
Fooling Vision and Language Models Despite Localization and Attention Mechanism
Xiaojun Xu
Xinyun Chen
Chang-rui Liu
Anna Rohrbach
Trevor Darrell
Basel Alomair
AAML
234
41
0
25 Sep 2017
Mitigating Evasion Attacks to Deep Neural Networks via Region-based
  Classification
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
296
215
0
17 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
346
670
0
13 Sep 2017
Can Deep Neural Networks Match the Related Objects?: A Survey on
  ImageNet-trained Classification Models
Can Deep Neural Networks Match the Related Objects?: A Survey on ImageNet-trained Classification Models
Han S. Lee
Heechul Jung
Alex A. Agarwal
Junmo Kim
153
6
0
12 Sep 2017
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep
  Neural Networks
Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks
Thilo Strauss
Markus Hanselmann
Andrej Junginger
Holger Ulmer
AAML
221
144
0
11 Sep 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural
  Networks without Training Substitute Models
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
508
2,079
0
14 Aug 2017
Cascade Adversarial Machine Learning Regularized with a Unified
  Embedding
Cascade Adversarial Machine Learning Regularized with a Unified EmbeddingInternational Conference on Learning Representations (ICLR), 2017
Taesik Na
J. Ko
Saibal Mukhopadhyay
AAMLGAN
142
105
0
08 Aug 2017
Efficient Defenses Against Adversarial Attacks
Efficient Defenses Against Adversarial Attacks
Valentina Zantedeschi
Maria-Irina Nicolae
Ambrish Rawat
AAML
277
311
0
21 Jul 2017
APE-GAN: Adversarial Perturbation Elimination with GAN
APE-GAN: Adversarial Perturbation Elimination with GAN
Shiwei Shen
Guoqing Jin
Feng Dai
Yongdong Zhang
GAN
281
239
0
18 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
1.5K
13,755
0
19 Jun 2017
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial
  Attacks with Moving Target Defense
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense
Sailik Sengupta
Tathagata Chakraborti
S. Kambhampati
AAML
351
66
0
19 May 2017
The Space of Transferable Adversarial Examples
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAMLSILM
282
581
0
11 Apr 2017
Enhancing Robustness of Machine Learning Systems via Data
  Transformations
Enhancing Robustness of Machine Learning Systems via Data Transformations
A. Bhagoji
Daniel Cullina
Chawin Sitawarin
Prateek Mittal
AAML
200
243
0
09 Apr 2017
Adequacy of the Gradient-Descent Method for Classifier Evasion Attacks
Adequacy of the Gradient-Descent Method for Classifier Evasion Attacks
Yi Han
Benjamin I. P. Rubinstein
SILMAAML
150
6
0
06 Apr 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GANAAML
361
1,000
0
24 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
1.4K
6,770
0
05 Dec 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
317
537
0
03 Oct 2016
Previous
123...282930