ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07485
17
380

Shake-Shake regularization

21 May 2017
Xavier Gastaldi
    3DPC
    BDL
    OOD
ArXivPDFHTML
Abstract

The method introduced in this paper aims at helping deep learning practitioners faced with an overfit problem. The idea is to replace, in a multi-branch network, the standard summation of parallel branches with a stochastic affine combination. Applied to 3-branch residual networks, shake-shake regularization improves on the best single shot published results on CIFAR-10 and CIFAR-100 by reaching test errors of 2.86% and 15.85%. Experiments on architectures without skip connections or Batch Normalization show encouraging results and open the door to a large set of applications. Code is available at https://github.com/xgastaldi/shake-shake

View on arXiv
Comments on this paper