ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08041
  4. Cited By
Unrolled Optimization with Deep Priors
v1v2 (latest)

Unrolled Optimization with Deep Priors

22 May 2017
Steven Diamond
Vincent Sitzmann
Felix Heide
Gordon Wetzstein
ArXiv (abs)PDFHTML

Papers citing "Unrolled Optimization with Deep Priors"

50 / 54 papers shown
Title
Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Comprehensive Examination of Unrolled Networks for Solving Linear Inverse Problems
Eric Chen
Xi Chen
A. Maleki
S. Jalali
155
0
0
08 Jan 2025
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
WARP-LCA: Efficient Convolutional Sparse Coding with Locally Competitive Algorithm
Geoffrey Kasenbacher
Felix Ehret
Gerrit Ecke
Sebastian Otte
181
1
0
24 Oct 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
95
1
0
08 Apr 2024
Video Restoration with a Deep Plug-and-Play Prior
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
99
1
0
06 Sep 2022
Uncertainty Quantification for Deep Unrolling-Based Computational
  Imaging
Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
107
12
0
02 Jul 2022
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image
  Labels for Quantitative Clinical Evaluation
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation
Arjun D Desai
Andrew M Schmidt
E. Rubin
Christopher M. Sandino
Marianne S. Black
...
R. Boutin
Christopher Ré
G. Gold
B. Hargreaves
Akshay S. Chaudhari
88
65
0
14 Mar 2022
Training Adaptive Reconstruction Networks for Blind Inverse Problems
Training Adaptive Reconstruction Networks for Blind Inverse Problems
Alban Gossard
P. Weiss
MedIm
50
6
0
23 Feb 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and
  stochastic gradient descent
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
67
26
0
16 Jan 2022
AI-based Reconstruction for Fast MRI -- A Systematic Review and
  Meta-analysis
AI-based Reconstruction for Fast MRI -- A Systematic Review and Meta-analysis
Yutong Chen
Carola-Bibiane Schönlieb
Pietro Lio
T. Leiner
Pier Luigi Dragotti
Ge Wang
Daniel Rueckert
D. Firmin
Guang Yang
181
91
0
23 Dec 2021
Procedural Kernel Networks
Procedural Kernel Networks
Bartlomiej Wronski
SupR
114
2
0
17 Dec 2021
Efficient differentiable quadratic programming layers: an ADMM approach
Efficient differentiable quadratic programming layers: an ADMM approach
A. Butler
R. Kwon
80
20
0
14 Dec 2021
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for
  Image Restoration
Preconditioned Plug-and-Play ADMM with Locally Adjustable Denoiser for Image Restoration
Mikael Le Pendu
C. Guillemot
72
17
0
01 Oct 2021
Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance
  Imaging -- Mini Review, Comparison and Perspectives
Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging -- Mini Review, Comparison and Perspectives
Guang Yang
Jun Lv
Yutong Chen
Jiahao Huang
Jin Zhu
MedIm
49
10
0
04 May 2021
Feasibility-based Fixed Point Networks
Feasibility-based Fixed Point Networks
Howard Heaton
Samy Wu Fung
A. Gibali
W. Yin
57
26
0
29 Apr 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
266
237
0
23 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
96
112
0
08 Mar 2021
Memory-efficient Learning for High-Dimensional MRI Reconstruction
Memory-efficient Learning for High-Dimensional MRI Reconstruction
Ke Wang
Michael R. Kellman
Christopher M. Sandino
Kevin Zhang
S. Vasanawala
Jonathan I. Tamir
Stella X. Yu
Michael Lustig
MedIm
45
12
0
06 Mar 2021
Solving Inverse Problems by Joint Posterior Maximization with
  Autoencoding Prior
Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior
Mario González
Andrés Almansa
Pauline Tan
92
31
0
02 Mar 2021
Interpretable Hyperspectral AI: When Non-Convex Modeling meets
  Hyperspectral Remote Sensing
Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing
Danfeng Hong
Wei He
Naoto Yokoya
Jing Yao
Lianru Gao
Liangpei Zhang
Jocelyn Chanussot
Xiaoxiang Zhu
57
0
0
02 Mar 2021
Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
  based on Hypernetwork
Phase Retrieval using Expectation Consistent Signal Recovery Algorithm based on Hypernetwork
Chang-Jen Wang
Chao-Kai Wen
Shang-Ho
S. Tsai
Shi Jin
Geoffrey Ye Li
60
5
0
12 Jan 2021
Model-Based Deep Learning
Model-Based Deep Learning
Nir Shlezinger
Jay Whang
Yonina C. Eldar
A. Dimakis
122
327
0
15 Dec 2020
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to
  Inverse Imaging Problems
TFPnP: Tuning-free Plug-and-Play Proximal Algorithm with Applications to Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Hua Huang
Carola-Bibiane Schönlieb
74
35
0
18 Nov 2020
Neurally Augmented ALISTA
Neurally Augmented ALISTA
Freya Behrens
Jonathan Sauder
P. Jung
85
15
0
05 Oct 2020
Unsupervised MRI Reconstruction with Generative Adversarial Networks
Unsupervised MRI Reconstruction with Generative Adversarial Networks
Elizabeth K. Cole
John M. Pauly
S. Vasanawala
Frank Ong
GANMedIm
62
51
0
29 Aug 2020
Solving Phase Retrieval with a Learned Reference
Solving Phase Retrieval with a Learned Reference
Rakib Hyder
Zikui Cai
M. Salman Asif
58
24
0
29 Jul 2020
Learning Convex Optimization Models
Learning Convex Optimization Models
Akshay Agrawal
Shane T. Barratt
Stephen P. Boyd
70
42
0
07 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
128
537
0
12 May 2020
AMP-Net: Denoising based Deep Unfolding for Compressive Image Sensing
AMP-Net: Denoising based Deep Unfolding for Compressive Image Sensing
Zhonghao Zhang
Yipeng Liu
Jiani Liu
Fei Wen
Ce Zhu
69
212
0
21 Apr 2020
Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI
  Reconstruction
Analysis of Deep Complex-Valued Convolutional Neural Networks for MRI Reconstruction
Elizabeth K. Cole
Joseph Y. Cheng
John M. Pauly
S. Vasanawala
61
11
0
03 Apr 2020
Learning a Probabilistic Strategy for Computational Imaging Sensor
  Selection
Learning a Probabilistic Strategy for Computational Imaging Sensor Selection
He Sun
Adrian Dalca
Katherine Bouman
64
15
0
23 Mar 2020
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging
  Problems
Tuning-free Plug-and-Play Proximal Algorithm for Inverse Imaging Problems
Kaixuan Wei
Angelica Aviles-Rivero
Jingwei Liang
Ying Fu
Carola-Bibiane Schönlieb
Hua Huang
80
105
0
22 Feb 2020
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing
V. Monga
Yuelong Li
Yonina C. Eldar
128
1,026
0
22 Dec 2019
Memory-efficient Learning for Large-scale Computational Imaging --
  NeurIPS deep inverse workshop
Memory-efficient Learning for Large-scale Computational Imaging -- NeurIPS deep inverse workshop
Michael R. Kellman
Jonathan I. Tamir
E. Bostan
Michael Lustig
Laura Waller
SupR
96
58
0
11 Dec 2019
Converged Deep Framework Assembling Principled Modules for CS-MRI
Converged Deep Framework Assembling Principled Modules for CS-MRI
Risheng Liu
Yuxi Zhang
Shichao Cheng
Zhongxuan Luo
Xin-Yue Fan
33
1
0
29 Oct 2019
Differentiable Convex Optimization Layers
Differentiable Convex Optimization Layers
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
102
666
0
28 Oct 2019
Reconstruction of Undersampled 3D Non-Cartesian Image-Based Navigators
  for Coronary MRA Using an Unrolled Deep Learning Model
Reconstruction of Undersampled 3D Non-Cartesian Image-Based Navigators for Coronary MRA Using an Unrolled Deep Learning Model
Mario O. Malavé
C. Baron
Srivathsan P. Koundinyan
Christopher M. Sandino
Frank Ong
Joseph Y. Cheng
D. Nishimura
169
42
0
24 Oct 2019
Recent Advances in Imaging Around Corners
Recent Advances in Imaging Around Corners
Tomohiro Maeda
Guy Satat
Tristan Swedish
L. Sinha
Ramesh Raskar
AAML
59
44
0
12 Oct 2019
Blending Diverse Physical Priors with Neural Networks
Blending Diverse Physical Priors with Neural Networks
Yunhao Ba
Guangyuan Zhao
A. Kadambi
PINNAI4CE
57
32
0
01 Oct 2019
Learned reconstructions for practical mask-based lensless imaging
Learned reconstructions for practical mask-based lensless imaging
Kristina Monakhova
Joshua Yurtsever
Grace Kuo
N. Antipa
Kyrollos Yanny
Laura Waller
54
110
0
30 Aug 2019
Differentiable Linearized ADMM
Differentiable Linearized ADMM
Xingyu Xie
Jianlong Wu
Zhisheng Zhong
Guangcan Liu
Zhouchen Lin
74
62
0
15 May 2019
Data-Driven Design for Fourier Ptychographic Microscopy
Data-Driven Design for Fourier Ptychographic Microscopy
Michael R. Kellman
E. Bostan
Michael Chen
Laura Waller
55
62
0
08 Apr 2019
Deep Shape from Polarization
Deep Shape from Polarization
Yunhao Ba
Alex Ross Gilbert
Franklin Wang
Jinfa Yang
Rui Chen
Yiqin Wang
Lei Yan
Boxin Shi
A. Kadambi
88
14
0
25 Mar 2019
Neumann Networks for Inverse Problems in Imaging
Neumann Networks for Inverse Problems in Imaging
Davis Gilton
Greg Ongie
Rebecca Willett
78
24
0
13 Jan 2019
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Deep Unfolding of a Proximal Interior Point Method for Image Restoration
Carla Bertocchi
Émilie Chouzenoux
M. Corbineau
J. Pesquet
M. Prato
90
108
0
11 Dec 2018
Multigrid Backprojection Super-Resolution and Deep Filter Visualization
Multigrid Backprojection Super-Resolution and Deep Filter Visualization
Pablo Navarrete Michelini
Hanwen Liu
Dan Zhu
SupR
75
20
0
25 Sep 2018
On the Convergence of Learning-based Iterative Methods for Nonconvex
  Inverse Problems
On the Convergence of Learning-based Iterative Methods for Nonconvex Inverse Problems
Risheng Liu
Shichao Cheng
Yi He
Xin-Yue Fan
Zhouchen Lin
Zhongxuan Luo
81
68
0
16 Aug 2018
Small Sample Learning in Big Data Era
Small Sample Learning in Big Data Era
Jun Shu
Zongben Xu
Deyu Meng
108
72
0
14 Aug 2018
Physics-based Learned Design: Optimized Coded-Illumination for
  Quantitative Phase Imaging
Physics-based Learned Design: Optimized Coded-Illumination for Quantitative Phase Imaging
Michael R. Kellman
E. Bostan
N. Repina
Laura Waller
124
125
0
10 Aug 2018
Neural Proximal Gradient Descent for Compressive Imaging
Neural Proximal Gradient Descent for Compressive Imaging
Morteza Mardani
Qingyun Sun
Shreyas S. Vasawanala
Vardan Papyan
Hatef Monajemi
John M. Pauly
D. Donoho
105
155
0
01 Jun 2018
Highly Scalable Image Reconstruction using Deep Neural Networks with
  Bandpass Filtering
Highly Scalable Image Reconstruction using Deep Neural Networks with Bandpass Filtering
Joseph Y. Cheng
Feiyu Chen
M. Alley
John M. Pauly
S. Vasanawala
87
43
0
08 May 2018
12
Next