Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08209
Cited By
Unbiasing Truncated Backpropagation Through Time
23 May 2017
Corentin Tallec
Yann Ollivier
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unbiasing Truncated Backpropagation Through Time"
20 / 20 papers shown
Title
Density Matrix Emulation of Quantum Recurrent Neural Networks for Multivariate Time Series Prediction
José Daniel Viqueira
Daniel Faílde
M. M. Juane
Andrés Gómez
David Mera
28
5
0
31 Oct 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
49
5
0
21 Apr 2023
Deep Subspace Encoders for Nonlinear System Identification
G. Beintema
Maarten Schoukens
R. Tóth
14
33
0
26 Oct 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
26
76
0
19 Jul 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
41
149
0
01 Jun 2022
Symbolic Learning to Optimize: Towards Interpretability and Scalability
Wenqing Zheng
Tianlong Chen
Ting-Kuei Hu
Zhangyang Wang
45
19
0
13 Mar 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
28
93
0
10 Nov 2021
Brax -- A Differentiable Physics Engine for Large Scale Rigid Body Simulation
C. Freeman
Erik Frey
Anton Raichuk
Sertan Girgin
Igor Mordatch
Olivier Bachem
48
350
0
24 Jun 2021
Non-Autoregressive vs Autoregressive Neural Networks for System Identification
Daniel Weber
C. Gühmann
19
7
0
05 May 2021
RIANN -- A Robust Neural Network Outperforms Attitude Estimation Filters
Daniel Weber
C. Gühmann
Thomas Seel
12
35
0
15 Apr 2021
Training Stronger Baselines for Learning to Optimize
Tianlong Chen
Weiyi Zhang
Jingyang Zhou
Shiyu Chang
Sijia Liu
Lisa Amini
Zhangyang Wang
OffRL
25
51
0
18 Oct 2020
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves
Luke Metz
Niru Maheswaranathan
C. Freeman
Ben Poole
Jascha Narain Sohl-Dickstein
33
62
0
23 Sep 2020
UFO-BLO: Unbiased First-Order Bilevel Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
32
7
0
05 Jun 2020
Adaptively Truncating Backpropagation Through Time to Control Gradient Bias
Christopher Aicher
N. Foti
E. Fox
MQ
22
32
0
17 May 2019
Optimal Kronecker-Sum Approximation of Real Time Recurrent Learning
Frederik Benzing
M. Gauy
Asier Mujika
A. Martinsson
Angelika Steger
23
22
0
11 Feb 2019
Approximating Real-Time Recurrent Learning with Random Kronecker Factors
Asier Mujika
Florian Meier
Angelika Steger
11
60
0
28 May 2018
Reviving and Improving Recurrent Back-Propagation
Renjie Liao
Yuwen Xiong
Ethan Fetaya
Lisa Zhang
Kijung Yoon
Xaq Pitkow
R. Urtasun
R. Zemel
BDL
36
118
0
16 Mar 2018
Regularizing and Optimizing LSTM Language Models
Stephen Merity
N. Keskar
R. Socher
60
1,091
0
07 Aug 2017
1