ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09851
  4. Cited By
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and
  High Frequency Trading
v1v2 (latest)

Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading

27 May 2017
M. Dixon
Nicholas G. Polson
Vadim Sokolov
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading"

22 / 22 papers shown
Title
Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)
Predicting the Unpredictable: Reproducible BiLSTM Forecasting of Incident Counts in the Global Terrorism Database (GTD)
Oluwasegun Adegoke
AI4TS
104
0
0
16 Oct 2025
Bayesian Double Descent
Bayesian Double Descent
Nick Polson
Vadim Sokolov
107
1
0
09 Jul 2025
Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Yuqi Li
Chuanguang Yang
Hansheng Zeng
Zeyu Dong
Zhulin An
Yongjun Xu
Yingli Tian
Hao Wu
AI4TS
226
23
0
27 Jun 2025
Generative Bayesian Computation for Maximum Expected Utility
Generative Bayesian Computation for Maximum Expected UtilityEntropy (Entropy), 2024
Nick Polson
Fabrizio Ruggeri
Vadim Sokolov
163
6
0
28 Aug 2024
PAMS: Platform for Artificial Market Simulations
PAMS: Platform for Artificial Market SimulationsSocial Science Research Network (SSRN), 2023
Masanori Hirano
Ryosuke Takata
Kiyoshi Izumi
163
5
0
19 Sep 2023
Generative AI for Bayesian Computation
Generative AI for Bayesian ComputationEntropy (Entropy), 2023
Nicholas G. Polson
Vadim Sokolov
BDL
308
8
0
24 May 2023
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal DataAnnual Review of Statistics and Its Application (ARSIA), 2022
C. Wikle
A. Zammit‐Mangion
BDL
258
59
0
05 Jun 2022
Deep Generative Models for Vehicle Speed Trajectories
Deep Generative Models for Vehicle Speed Trajectories
F. Behnia
D. Karbowski
Vadim Sokolov
149
2
0
14 Dec 2021
Merging Two Cultures: Deep and Statistical Learning
Merging Two Cultures: Deep and Statistical Learning
A. Bhadra
J. Datta
Nicholas G. Polson
Vadim Sokolov
Jianeng Xu
BDL
211
10
0
22 Oct 2021
Clustering of Time Series Data with Prior Geographical Information
Clustering of Time Series Data with Prior Geographical Information
Reza Asadi
Amelia Regan
AI4TS
98
3
0
03 Jul 2021
A Reinforcement Learning Based Encoder-Decoder Framework for Learning
  Stock Trading Rules
A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules
Mehran Taghian
A. Asadi
Reza Safabakhsh
AI4TS
170
2
0
08 Jan 2021
Lifelong Property Price Prediction: A Case Study for the Toronto Real
  Estate Market
Lifelong Property Price Prediction: A Case Study for the Toronto Real Estate MarketIEEE Transactions on Knowledge and Data Engineering (TKDE), 2020
Hao Peng
Jianxin Li
Zechuan Wang
Renyu Yang
Mingzhe Liu
Mingming Zhang
Philip S. Yu
Lifang He
3DV
145
37
0
12 Aug 2020
Industrial Forecasting with Exponentially Smoothed Recurrent Neural
  Networks
Industrial Forecasting with Exponentially Smoothed Recurrent Neural Networks
M. Dixon
AI4TS
138
17
0
09 Apr 2020
Deep Learning for Spatio-Temporal Data Mining: A Survey
Deep Learning for Spatio-Temporal Data Mining: A SurveyIEEE Transactions on Knowledge and Data Engineering (TKDE), 2019
Senzhang Wang
Jiannong Cao
Philip S. Yu
AI4TS
279
701
0
11 Jun 2019
Deep Fundamental Factor Models
Deep Fundamental Factor Models
M. Dixon
Nicholas G. Polson
207
9
0
18 Mar 2019
Deep Learning: Computational Aspects
Deep Learning: Computational Aspects
Nicholas G. Polson
Vadim Sokolov
PINNBDLAI4CE
132
14
0
26 Aug 2018
Deep Learning for Energy Markets
Deep Learning for Energy Markets
Michael Polson
Vadim Sokolov
AI4TS
184
27
0
16 Aug 2018
Deep Learning
Deep Learning
Nicholas G. Polson
Vadim Sokolov
AI4CEBDL
151
1
0
20 Jul 2018
Deep Echo State Networks with Uncertainty Quantification for
  Spatio-Temporal Forecasting
Deep Echo State Networks with Uncertainty Quantification for Spatio-Temporal Forecasting
Patrick L. McDermott
C. Wikle
BDL
214
83
0
28 Jun 2018
Deep Reinforcement Learning for Dynamic Urban Transportation Problems
Deep Reinforcement Learning for Dynamic Urban Transportation Problems
Laura Schultz
Vadim Sokolov
AI4CE
175
13
0
14 Jun 2018
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying
  Uncertainty in Spatial-Temporal Data
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
Patrick L. McDermott
C. Wikle
BDLUQCV
206
107
0
02 Nov 2017
Deep Learning: A Bayesian Perspective
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
357
126
0
01 Jun 2017
1