Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.10888
Cited By
Identification of Gaussian Process State Space Models
30 May 2017
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Identification of Gaussian Process State Space Models"
23 / 23 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
36
3
0
19 Jul 2024
Future Aware Safe Active Learning of Time Varying Systems using Gaussian Processes
Markus Lange-Hegermann
Christoph Zimmer
AI4TS
47
0
0
17 May 2024
Multi-Response Heteroscedastic Gaussian Process Models and Their Inference
Taehee Lee
Jun S. Liu
13
1
0
29 Aug 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
P. Djuric
26
12
0
29 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
On Uncertainty in Deep State Space Models for Model-Based Reinforcement Learning
P. Becker
Gerhard Neumann
30
9
0
17 Oct 2022
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
20
0
0
04 Sep 2022
SSDNet: State Space Decomposition Neural Network for Time Series Forecasting
Yang Lin
I. Koprinska
Mashud Rana
BDL
AI4TS
26
31
0
19 Dec 2021
On the Stochastic Stability of Deep Markov Models
Ján Drgoňa
Sayak Mukherjee
Jiaxin Zhang
Frank Liu
M. Halappanavar
BDL
25
5
0
08 Nov 2021
Variational multiple shooting for Bayesian ODEs with Gaussian processes
Pashupati Hegde
Çağatay Yıldız
Harri Lähdesmäki
Samuel Kaski
Markus Heinonen
30
16
0
21 Jun 2021
Safe Chance Constrained Reinforcement Learning for Batch Process Control
M. Mowbray
Panagiotis Petsagkourakis
Ehecatl Antonio del Rio Chanona
Dongda Zhang
OffRL
34
34
0
23 Apr 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Learning Constrained Dynamics with Gauss Principle adhering Gaussian Processes
A. R. Geist
Sebastian Trimpe
25
21
0
23 Apr 2020
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
27
38
0
17 Oct 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
29
0
0
03 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
23
34
0
01 Jul 2019
Sequential Neural Processes
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDL
AI4TS
40
81
0
24 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
38
30
0
13 Jun 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
23
2
0
03 Jan 2019
Continuous time Gaussian process dynamical models in gene regulatory network inference
A. Aalto
L. Viitasaari
Pauliina Ilmonen
Laurent Mombaerts
Jorge M. Gonçalves
16
7
0
24 Aug 2018
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
1