Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.10941
Cited By
Spectral Norm Regularization for Improving the Generalizability of Deep Learning
31 May 2017
Yuichi Yoshida
Takeru Miyato
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spectral Norm Regularization for Improving the Generalizability of Deep Learning"
22 / 72 papers shown
Title
Stable and expressive recurrent vision models
Drew Linsley
A. Ashok
L. Govindarajan
Rex G Liu
Thomas Serre
19
45
0
22 May 2020
Regularization Methods for Generative Adversarial Networks: An Overview of Recent Studies
Minhyeok Lee
Junhee Seok
GAN
27
25
0
19 May 2020
An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning
Hirohisa Watanabe
Mineto Tsukada
Hiroki Matsutani
27
20
0
10 May 2020
Pores for thought: The use of generative adversarial networks for the stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries
Andrea Gayon-Lombardo
L. Mosser
N. Brandon
S. J. Cooper
AI4CE
25
120
0
17 Feb 2020
REST: Robust and Efficient Neural Networks for Sleep Monitoring in the Wild
Rahul Duggal
Scott Freitas
Cao Xiao
Duen Horng Chau
Jimeng Sun
28
22
0
29 Jan 2020
Orthogonal Wasserstein GANs
J. Müller
Reinhard Klein
Michael Weinmann
48
9
0
29 Nov 2019
Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks
Sekitoshi Kanai
Yasutoshi Ida
Yasuhiro Fujiwara
Masanori Yamada
S. Adachi
AAML
23
1
0
19 Sep 2019
A Frobenius norm regularization method for convolutional kernels to avoid unstable gradient problem
Pei-Chang Guo
34
5
0
25 Jul 2019
ReachNN: Reachability Analysis of Neural-Network Controlled Systems
Chao Huang
Jiameng Fan
Wenchao Li
Xin Chen
Qi Zhu
31
78
0
25 Jun 2019
Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy
Zhengwei Wang
Qi She
T. Ward
MedIm
EGVM
29
90
0
04 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
19
317
0
31 May 2019
Robust Sparse Regularization: Simultaneously Optimizing Neural Network Robustness and Compactness
Adnan Siraj Rakin
Zhezhi He
Li Yang
Yanzhi Wang
Liqiang Wang
Deliang Fan
AAML
40
21
0
30 May 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
25
22
0
21 Feb 2019
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
49
193
0
02 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
16
15
0
30 Sep 2018
The Singular Values of Convolutional Layers
Hanie Sedghi
Vineet Gupta
Philip M. Long
FAtt
48
200
0
26 May 2018
NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations
Marco Ciccone
Marco Gallieri
Jonathan Masci
Christian Osendorfer
Faustino J. Gomez
30
56
0
19 Apr 2018
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
25
74
0
22 Feb 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
56
4,402
0
16 Feb 2018
Gradient Regularization Improves Accuracy of Discriminative Models
D. Varga
Adrián Csiszárik
Zsolt Zombori
18
53
0
28 Dec 2017
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
310
2,896
0
15 Sep 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
186
1,186
0
30 Nov 2014
Previous
1
2