ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.02815
  4. Cited By
From Bayesian Sparsity to Gated Recurrent Nets
v1v2 (latest)

From Bayesian Sparsity to Gated Recurrent Nets

9 June 2017
Hao He
Bo Xin
David Wipf
    BDL
ArXiv (abs)PDFHTML

Papers citing "From Bayesian Sparsity to Gated Recurrent Nets"

14 / 14 papers shown
Title
Implicit vs Unfolded Graph Neural Networks
Implicit vs Unfolded Graph Neural Networks
Yongyi Yang
Tang Liu
Yangkun Wang
Zengfeng Huang
David Wipf
233
15
0
12 Nov 2021
Learned Interpretable Residual Extragradient ISTA for Sparse Coding
Learned Interpretable Residual Extragradient ISTA for Sparse Coding
Lin Kong
Wei Sun
Fanhua Shang
Yuanyuan Liu
Hongying Liu
44
1
0
22 Jun 2021
Sparse Bayesian Learning via Stepwise Regression
Sparse Bayesian Learning via Stepwise Regression
Sebastian Ament
Carla P. Gomes
55
6
0
11 Jun 2021
On the Optimality of Backward Regression: Sparse Recovery and Subset
  Selection
On the Optimality of Backward Regression: Sparse Recovery and Subset Selection
Sebastian Ament
Carla P. Gomes
39
6
0
06 Jun 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
258
237
0
23 Mar 2021
Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
  Learning Approach With Adaptive Depth
Solving Sparse Linear Inverse Problems in Communication Systems: A Deep Learning Approach With Adaptive Depth
Wei Chen
Bowen Zhang
Shimei Jin
B. Ai
Z. Zhong
51
25
0
29 Oct 2020
Deep Learning Methods for Solving Linear Inverse Problems: Research
  Directions and Paradigms
Deep Learning Methods for Solving Linear Inverse Problems: Research Directions and Paradigms
Yanna Bai
Wei Chen
Jie Chen
Weisi Guo
115
69
0
27 Jul 2020
Compressed Sensing via Measurement-Conditional Generative Models
Compressed Sensing via Measurement-Conditional Generative Models
Kyungsu Kim
J. H. Lee
Eunho Yang
GANMedIm
55
3
0
02 Jul 2020
Data-driven Estimation of Sinusoid Frequencies
Data-driven Estimation of Sinusoid Frequencies
Gautier Izacard
S. Mohan
C. Fernandez‐Granda
30
52
0
03 Jun 2019
Fourier Phase Retrieval with Extended Support Estimation via Deep Neural
  Network
Fourier Phase Retrieval with Extended Support Estimation via Deep Neural Network
Kyung-Su Kim
Sae-Young Chung
13
6
0
03 Apr 2019
Tree Search Network for Sparse Regression
Tree Search Network for Sparse Regression
Kyung-Su Kim
Sae-Young Chung
34
1
0
01 Apr 2019
A Learning-Based Framework for Line-Spectra Super-resolution
A Learning-Based Framework for Line-Spectra Super-resolution
Gautier Izacard
B. Bernstein
C. Fernandez‐Granda
37
35
0
14 Nov 2018
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
61
53
0
26 Jun 2018
Neural Inverse Rendering for General Reflectance Photometric Stereo
Neural Inverse Rendering for General Reflectance Photometric Stereo
Tatsunori Taniai
Takanori Maehara
130
105
0
28 Feb 2018
1