ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.03475
  4. Cited By
Confident Multiple Choice Learning

Confident Multiple Choice Learning

12 June 2017
Kimin Lee
Changho Hwang
KyoungSoo Park
Jinwoo Shin
ArXivPDFHTML

Papers citing "Confident Multiple Choice Learning"

10 / 10 papers shown
Title
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
Annealed Multiple Choice Learning: Overcoming limitations of Winner-takes-all with annealing
David Perera
Victor Letzelter
Théo Mariotte
Adrien Cortés
Mickaël Chen
S. Essid
Ga¨el Richard
66
2
0
20 Jan 2025
Annealed Winner-Takes-All for Motion Forecasting
Annealed Winner-Takes-All for Motion Forecasting
Yihong Xu
Victor Letzelter
Mickaël Chen
Éloi Zablocki
Matthieu Cord
128
1
0
17 Sep 2024
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
Hierarchical Uncertainty Exploration via Feedforward Posterior Trees
E. Nehme
Rotem Mulayoff
T. Michaeli
UQCV
42
2
0
24 May 2024
Masked Vector Quantization
David D. Nguyen
David Leibowitz
Surya Nepal
S. Kanhere
MQ
13
0
0
16 Jan 2023
DP-SSL: Towards Robust Semi-supervised Learning with A Few Labeled
  Samples
DP-SSL: Towards Robust Semi-supervised Learning with A Few Labeled Samples
Yi Xu
Jiandong Ding
Lu Zhang
Shuigeng Zhou
33
32
0
26 Oct 2021
Towards Oracle Knowledge Distillation with Neural Architecture Search
Towards Oracle Knowledge Distillation with Neural Architecture Search
Minsoo Kang
Jonghwan Mun
Bohyung Han
FedML
28
43
0
29 Nov 2019
Deep ensemble network with explicit complementary model for
  accuracy-balanced classification
Deep ensemble network with explicit complementary model for accuracy-balanced classification
Dohyun Kim
Kyeorye Lee
Jiyeon Kim
Junseok Kwon
Joongheon Kim
6
0
0
10 Aug 2019
End-to-End Content and Plan Selection for Data-to-Text Generation
End-to-End Content and Plan Selection for Data-to-Text Generation
Sebastian Gehrmann
Falcon Z. Dai
H. Elder
Alexander M. Rush
18
70
0
10 Oct 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
23
870
0
26 Nov 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
1