Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.04957
Cited By
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
15 June 2017
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications"
50 / 51 papers shown
Title
Learning a Single Neuron Robustly to Distributional Shifts and Adversarial Label Noise
Shuyao Li
Sushrut Karmalkar
Ilias Diakonikolas
Jelena Diakonikolas
OOD
42
0
0
11 Nov 2024
A Primal-dual algorithm for image reconstruction with ICNNs
Hok Shing Wong
Matthias Joachim Ehrhardt
Subhadip Mukherjee
18
1
0
16 Oct 2024
Stochastic First-Order Methods with Non-smooth and Non-Euclidean Proximal Terms for Nonconvex High-Dimensional Stochastic Optimization
Yue Xie
Jiawen Bi
Hongcheng Liu
18
0
0
27 Jun 2024
Fast Minimization of Expected Logarithmic Loss via Stochastic Dual Averaging
C. Tsai
Hao-Chung Cheng
Yen-Huan Li
12
0
0
05 Nov 2023
Enhanced Federated Optimization: Adaptive Unbiased Sampling with Reduced Variance
Dun Zeng
Zenglin Xu
Yu Pan
Xu Luo
Qifan Wang
Xiaoying Tang
FedML
10
1
0
04 Oct 2023
Towards a Better Theoretical Understanding of Independent Subnetwork Training
Egor Shulgin
Peter Richtárik
AI4CE
6
6
0
28 Jun 2023
Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective and Improved Bounds
Xu Cai
Cheuk Yin Lin
Jelena Diakonikolas
FedML
21
5
0
21 Jun 2023
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Cheuk Yin Lin
Chaobing Song
Jelena Diakonikolas
17
4
0
28 Mar 2023
Restarts subject to approximate sharpness: A parameter-free and optimal scheme for first-order methods
Ben Adcock
Matthew J. Colbrook
Maksym Neyra-Nesterenko
14
2
0
05 Jan 2023
Stochastic Primal-Dual Three Operator Splitting Algorithm with Extension to Equivariant Regularization-by-Denoising
Junqi Tang
Matthias Joachim Ehrhardt
Carola-Bibiane Schönlieb
20
0
0
02 Aug 2022
Fast Kernel Methods for Generic Lipschitz Losses via
p
p
p
-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
11
5
0
08 Jun 2022
Operator Sketching for Deep Unrolling Networks
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
13
0
0
21 Mar 2022
Data-Consistent Local Superresolution for Medical Imaging
Junqi Tang
SupR
12
0
0
22 Feb 2022
Semi-Implicit Hybrid Gradient Methods with Application to Adversarial Robustness
Beomsu Kim
Junghoon Seo
AAML
12
0
0
21 Feb 2022
Sharper Rates for Separable Minimax and Finite Sum Optimization via Primal-Dual Extragradient Methods
Yujia Jin
Aaron Sidford
Kevin Tian
11
30
0
09 Feb 2022
On the Complexity of a Practical Primal-Dual Coordinate Method
Ahmet Alacaoglu
V. Cevher
Stephen J. Wright
13
10
0
19 Jan 2022
A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization
Antonio Silveti-Falls
C. Molinari
Jalal Fadili
14
8
0
22 Dec 2021
A Continuous-time Stochastic Gradient Descent Method for Continuous Data
Kexin Jin
J. Latz
Chenguang Liu
Carola-Bibiane Schönlieb
10
9
0
07 Dec 2021
Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for Linear Programming
Haihao Lu
Jinwen Yang
6
6
0
10 Nov 2021
Coordinate Linear Variance Reduction for Generalized Linear Programming
Chaobing Song
Cheuk Yin Lin
Stephen J. Wright
Jelena Diakonikolas
16
12
0
02 Nov 2021
WARPd: A linearly convergent first-order method for inverse problems with approximate sharpness conditions
Matthew J. Colbrook
8
2
0
24 Oct 2021
Stochastic Primal-Dual Deep Unrolling
Junqi Tang
Subhadip Mukherjee
Carola-Bibiane Schönlieb
6
4
0
19 Oct 2021
Accelerated nonlinear primal-dual hybrid gradient methods with applications to supervised machine learning
Jérome Darbon
G. P. Langlois
23
4
0
24 Sep 2021
Variance Reduction via Primal-Dual Accelerated Dual Averaging for Nonsmooth Convex Finite-Sums
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
59
16
0
26 Feb 2021
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
20
6
0
26 Feb 2021
Stochastic Variance Reduction for Variational Inequality Methods
Ahmet Alacaoglu
Yura Malitsky
51
68
0
16 Feb 2021
Maximum-Likelihood Quantum State Tomography by Soft-Bayes
Chien-Ming Lin
Yu-Ming Hsu
Yen-Huan Li
10
1
0
31 Dec 2020
ANIMC: A Soft Framework for Auto-weighted Noisy and Incomplete Multi-view Clustering
Xiang Fang
Yuchong Hu
Pan Zhou
Dapeng Oliver Wu
17
34
0
20 Nov 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
Multi-modality imaging with structure-promoting regularisers
Matthias Joachim Ehrhardt
MedIm
13
10
0
22 Jul 2020
Random extrapolation for primal-dual coordinate descent
Ahmet Alacaoglu
Olivier Fercoq
V. Cevher
6
16
0
13 Jul 2020
A Fast Stochastic Plug-and-Play ADMM for Imaging Inverse Problems
Junqi Tang
Mike Davies
9
17
0
20 Jun 2020
A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth
Peter Richtárik
8
61
0
19 Jun 2020
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
17
37
0
15 Apr 2020
A New Randomized Primal-Dual Algorithm for Convex Optimization with Optimal Last Iterate Rates
Quoc Tran-Dinh
Deyi Liu
64
4
0
03 Mar 2020
High-Performance Statistical Computing in the Computing Environments of the 2020s
Seyoon Ko
Hua Zhou
Jin J. Zhou
Joong-Ho Won
13
8
0
07 Jan 2020
The Practicality of Stochastic Optimization in Imaging Inverse Problems
Junqi Tang
K. Egiazarian
Mohammad Golbabaee
Mike Davies
15
30
0
22 Oct 2019
Randomized Iterative Methods for Linear Systems: Momentum, Inexactness and Gossip
Nicolas Loizou
13
5
0
26 Sep 2019
A Hybrid Stochastic Optimization Framework for Stochastic Composite Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
T. Dzung
Lam M. Nguyen
13
48
0
08 Jul 2019
Expected Sarsa(
λ
λ
λ
) with Control Variate for Variance Reduction
Long Yang
Yu Zhang
Jun Wen
Qian Zheng
Pengfei Li
Gang Pan
14
0
0
25 Jun 2019
Hybrid Stochastic Gradient Descent Algorithms for Stochastic Nonconvex Optimization
Quoc Tran-Dinh
Nhan H. Pham
Dzung Phan
Lam M. Nguyen
14
53
0
15 May 2019
Convergence Analysis of Inexact Randomized Iterative Methods
Nicolas Loizou
Peter Richtárik
6
21
0
19 Mar 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
6
138
0
15 Feb 2019
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
17
368
0
27 Jan 2019
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
21
25
0
24 Jan 2019
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
10
71
0
09 Sep 2018
Faster PET Reconstruction with Non-Smooth Priors by Randomization and Preconditioning
Matthias Joachim Ehrhardt
P. Markiewicz
Carola-Bibiane Schönlieb
8
29
0
21 Aug 2018
A Constant Step Stochastic Douglas-Rachford Algorithm with Application to Non Separable Regularizations
Adil Salim
Pascal Bianchi
W. Hachem
10
2
0
03 Apr 2018
On the Iteration Complexity Analysis of Stochastic Primal-Dual Hybrid Gradient Approach with High Probability
Linbo Qiao
Tianyi Lin
Qi Qin
Xicheng Lu
9
1
0
22 Jan 2018
A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments
Radoslav Harman
Lenka Filová
Peter Richtárik
16
51
0
17 Jan 2018
1
2
Next