Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.07206
Cited By
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
22 June 2017
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explaining Recurrent Neural Network Predictions in Sentiment Analysis"
50 / 64 papers shown
Title
SPES: Spectrogram Perturbation for Explainable Speech-to-Text Generation
Dennis Fucci
Marco Gaido
Beatrice Savoldi
Matteo Negri
Mauro Cettolo
L. Bentivogli
57
1
0
03 Nov 2024
Explaining Text Similarity in Transformer Models
Alexandros Vasileiou
Oliver Eberle
43
7
0
10 May 2024
Sparse Explanations of Neural Networks Using Pruned Layer-Wise Relevance Propagation
Paulo Yanez Sarmiento
Simon Witzke
Nadja Klein
Bernhard Y. Renard
FAtt
AAML
40
0
0
22 Apr 2024
Unveiling Black-boxes: Explainable Deep Learning Models for Patent Classification
Md. Shajalal
Sebastian Denef
Md. Rezaul Karim
Alexander Boden
Gunnar Stevens
XAI
24
5
0
31 Oct 2023
HealthPrism: A Visual Analytics System for Exploring Children's Physical and Mental Health Profiles with Multimodal Data
Zhihan Jiang
Handi Chen
Rui Zhou
Jing Deng
Xinchen Zhang
Running Zhao
Cong Xie
Yifang Wang
Edith C.H. Ngai
19
4
0
23 Jul 2023
DARE: Towards Robust Text Explanations in Biomedical and Healthcare Applications
Adam Ivankay
Mattia Rigotti
P. Frossard
OOD
MedIm
29
1
0
05 Jul 2023
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
N. Jethani
A. Saporta
Rajesh Ranganath
FAtt
29
11
0
24 Feb 2023
Explaining text classifiers through progressive neighborhood approximation with realistic samples
Yi Cai
Arthur Zimek
Eirini Ntoutsi
Gerhard Wunder
AI4TS
22
0
0
11 Feb 2023
A Biomedical Knowledge Graph for Biomarker Discovery in Cancer
Md. Rezaul Karim
Lina Molinas Comet
Oya Beyan
Dietrich-Rebholz Schuhmann
Stefan Decker
22
2
0
09 Feb 2023
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
41
2
0
03 Jan 2023
Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
48
17
0
30 Dec 2022
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
29
68
0
25 Dec 2022
Explaining Image Classifiers with Multiscale Directional Image Representation
Stefan Kolek
Robert Windesheim
Héctor Andrade-Loarca
Gitta Kutyniok
Ron Levie
29
4
0
22 Nov 2022
Explainable Artificial Intelligence: Precepts, Methods, and Opportunities for Research in Construction
Peter E. D. Love
Weili Fang
J. Matthews
Stuart Porter
Hanbin Luo
L. Ding
XAI
29
7
0
12 Nov 2022
Feature Importance for Time Series Data: Improving KernelSHAP
M. Villani
J. Lockhart
Daniele Magazzeni
FAtt
AI4TS
40
6
0
05 Oct 2022
Explainable Intrusion Detection Systems (X-IDS): A Survey of Current Methods, Challenges, and Opportunities
Subash Neupane
Jesse Ables
William Anderson
Sudip Mittal
Shahram Rahimi
I. Banicescu
Maria Seale
AAML
56
71
0
13 Jul 2022
From Attribution Maps to Human-Understandable Explanations through Concept Relevance Propagation
Reduan Achtibat
Maximilian Dreyer
Ilona Eisenbraun
S. Bosse
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
FAtt
30
132
0
07 Jun 2022
How explainable are adversarially-robust CNNs?
Mehdi Nourelahi
Lars Kotthoff
Peijie Chen
Anh Totti Nguyen
AAML
FAtt
22
8
0
25 May 2022
Learning to Scaffold: Optimizing Model Explanations for Teaching
Patrick Fernandes
Marcos Vinícius Treviso
Danish Pruthi
André F. T. Martins
Graham Neubig
FAtt
25
22
0
22 Apr 2022
Forward Composition Propagation for Explainable Neural Reasoning
Isel Grau
Gonzalo Nápoles
M. Bello
Yamisleydi Salgueiro
A. Jastrzębska
22
0
0
23 Dec 2021
Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis
Thomas Fel
Rémi Cadène
Mathieu Chalvidal
Matthieu Cord
David Vigouroux
Thomas Serre
MLAU
FAtt
AAML
114
58
0
07 Nov 2021
Double Trouble: How to not explain a text classifier's decisions using counterfactuals synthesized by masked language models?
Thang M. Pham
Trung H. Bui
Long Mai
Anh Totti Nguyen
21
7
0
22 Oct 2021
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
17
44
0
20 Oct 2021
A Framework for Rationale Extraction for Deep QA models
Sahana Ramnath
Preksha Nema
Deep Sahni
Mitesh M. Khapra
AAML
FAtt
17
0
0
09 Oct 2021
Improving Scheduled Sampling with Elastic Weight Consolidation for Neural Machine Translation
Michalis Korakakis
Andreas Vlachos
CLL
31
2
0
13 Sep 2021
Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience
G. Chrysostomou
Nikolaos Aletras
32
16
0
31 Aug 2021
Levels of explainable artificial intelligence for human-aligned conversational explanations
Richard Dazeley
Peter Vamplew
Cameron Foale
Charlotte Young
Sunil Aryal
F. Cruz
30
90
0
07 Jul 2021
On Guaranteed Optimal Robust Explanations for NLP Models
Emanuele La Malfa
A. Zbrzezny
Rhiannon Michelmore
Nicola Paoletti
Marta Z. Kwiatkowska
FAtt
13
47
0
08 May 2021
Improving the Faithfulness of Attention-based Explanations with Task-specific Information for Text Classification
G. Chrysostomou
Nikolaos Aletras
21
37
0
06 May 2021
Flexible Instance-Specific Rationalization of NLP Models
G. Chrysostomou
Nikolaos Aletras
31
14
0
16 Apr 2021
Explainability: Relevance based Dynamic Deep Learning Algorithm for Fault Detection and Diagnosis in Chemical Processes
P. Agarwal
Melih Tamer
H. Budman
AAML
13
43
0
22 Mar 2021
DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced Bengali Language
Md. Rezaul Karim
Sumon Dey
Tanhim Islam
Sagor Sarker
Mehadi Hasan Menon
Kabir Hossain
Bharathi Raja Chakravarthi
Md. Azam Hossain
Stefan Decker
14
77
0
28 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
24
63
0
18 Dec 2020
It's All in the Name: A Character Based Approach To Infer Religion
Rochana Chaturvedi
Sugat Chaturvedi
24
23
0
27 Oct 2020
Interpretation of NLP models through input marginalization
Siwon Kim
Jihun Yi
Eunji Kim
Sungroh Yoon
MILM
FAtt
22
58
0
27 Oct 2020
The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?
Jasmijn Bastings
Katja Filippova
XAI
LRM
46
173
0
12 Oct 2020
Explaining Deep Neural Networks
Oana-Maria Camburu
XAI
FAtt
33
26
0
04 Oct 2020
Towards Interpretable Deep Learning Models for Knowledge Tracing
Yu Lu
De-Wu Wang
Qinggang Meng
Penghe Chen
17
36
0
13 May 2020
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
22
22
0
17 Apr 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
38
300
0
08 Jan 2020
When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt
Maximilian Granz
Tim Landgraf
BDL
FAtt
XAI
13
132
0
20 Dec 2019
Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks
Aya Abdelsalam Ismail
Mohamed K. Gunady
L. Pessoa
H. C. Bravo
S. Feizi
AI4TS
25
50
0
27 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
37
6,111
0
22 Oct 2019
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
26
60
0
04 Oct 2019
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
436
0
26 Sep 2019
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
21
79
0
25 Sep 2019
Analysing Neural Language Models: Contextual Decomposition Reveals Default Reasoning in Number and Gender Assignment
Jaap Jumelet
Willem H. Zuidema
Dieuwke Hupkes
LRM
33
37
0
19 Sep 2019
Understanding Memory Modules on Learning Simple Algorithms
Kexin Wang
Yu Zhou
Shaonan Wang
Jiajun Zhang
Chengqing Zong
34
0
0
01 Jul 2019
1
2
Next