Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1706.07269
Cited By
v1
v2
v3 (latest)
Explanation in Artificial Intelligence: Insights from the Social Sciences
22 June 2017
Tim Miller
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explanation in Artificial Intelligence: Insights from the Social Sciences"
50 / 1,336 papers shown
Rich Semantics Improve Few-shot Learning
British Machine Vision Conference (BMVC), 2021
Mohamed Afham
Salman Khan
Muhammad Haris Khan
Muzammal Naseer
Fahad Shahbaz Khan
VLM
234
28
0
26 Apr 2021
Exploiting Explanations for Model Inversion Attacks
IEEE International Conference on Computer Vision (ICCV), 2021
Xu Zhao
Wencan Zhang
Xiao Xiao
Brian Y. Lim
MIACV
322
104
0
26 Apr 2021
A Picture is Worth a Collaboration: Accumulating Design Knowledge for Computer-Vision-based Hybrid Intelligence Systems
European Conference on Information Systems (ECIS), 2021
Patrick Zschech
J. Walk
Kai Heinrich
Michael Vossing
Niklas Kühl
222
4
0
23 Apr 2021
A Novel Interaction-based Methodology Towards Explainable AI with Better Understanding of Pneumonia Chest X-ray Images
Discover Artificial Intelligence (Discover AI), 2021
S. Lo
Yiqiao Yin
112
10
0
19 Apr 2021
Interpretability in deep learning for finance: a case study for the Heston model
Social Science Research Network (SSRN), 2021
D. Brigo
Xiaoshan Huang
A. Pallavicini
Haitz Sáez de Ocáriz Borde
FAtt
154
14
0
19 Apr 2021
GraphSVX: Shapley Value Explanations for Graph Neural Networks
Alexandre Duval
Fragkiskos D. Malliaros
FAtt
246
115
0
18 Apr 2021
Explaining Answers with Entailment Trees
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Bhavana Dalvi
Peter Alexander Jansen
Oyvind Tafjord
Zhengnan Xie
Hannah Smith
Leighanna Pipatanangkura
Peter Clark
ReLM
FAtt
LRM
570
210
0
17 Apr 2021
LEx: A Framework for Operationalising Layers of Machine Learning Explanations
Ronal Singh
Upol Ehsan
M. Cheong
Mark O. Riedl
Tim Miller
120
5
0
15 Apr 2021
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
Data mining and knowledge discovery (DMKD), 2021
Dieter Brughmans
Pieter Leyman
David Martens
229
82
0
15 Apr 2021
Machine learning and deep learning
Electronic Markets (EM), 2021
Christian Janiesch
Patrick Zschech
Kai Heinrich
171
1,537
0
12 Apr 2021
Enhancing Deep Neural Network Saliency Visualizations with Gradual Extrapolation
IEEE Access (IEEE Access), 2021
Tomasz Szandała
FAtt
122
4
0
11 Apr 2021
Connecting Attributions and QA Model Behavior on Realistic Counterfactuals
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Xi Ye
Rohan Nair
Greg Durrett
236
28
0
09 Apr 2021
Individual Explanations in Machine Learning Models: A Survey for Practitioners
Alfredo Carrillo
Luis F. Cantú
Alejandro Noriega
FaML
100
16
0
09 Apr 2021
Question-Driven Design Process for Explainable AI User Experiences
Q. V. Liao
Milena Pribić
Jaesik Han
Sarah Miller
Daby M. Sow
326
63
0
08 Apr 2021
Towards a Rigorous Evaluation of Explainability for Multivariate Time Series
Rohit Saluja
A. Malhi
Samanta Knapic
Kary Främling
C. Cavdar
XAI
AI4TS
115
20
0
06 Apr 2021
Measuring Linguistic Diversity During COVID-19
Artaches Ambartsoumian
F. Popowich
Benjamin Adams
207
38
0
03 Apr 2021
Reconciling the Discrete-Continuous Divide: Towards a Mathematical Theory of Sparse Communication
André F. T. Martins
214
1
0
01 Apr 2021
Modeling Users and Online Communities for Abuse Detection: A Position on Ethics and Explainability
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Pushkar Mishra
H. Yannakoudakis
Ekaterina Shutova
246
8
0
31 Mar 2021
Anomaly-Based Intrusion Detection by Machine Learning: A Case Study on Probing Attacks to an Institutional Network
IEEE Access (IEEE Access), 2021
E. Tufan
C. Tezcan
Cengiz Acartürk
109
32
0
31 Mar 2021
Contrastive Explanations of Plans Through Model Restrictions
Journal of Artificial Intelligence Research (JAIR), 2021
Benjamin Krarup
Senka Krivic
Daniele Magazzeni
D. Long
Michael Cashmore
David E. Smith
156
45
0
29 Mar 2021
Situated Case Studies for a Human-Centered Design of Explanation User Interfaces
Claudia Muller-Birn
Katrin Glinka
Peter Sorries
Michael Tebbe
S. Michl
122
3
0
29 Mar 2021
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
Minds and Machines (Minds Mach.), 2021
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
214
70
0
27 Mar 2021
Generating and Evaluating Explanations of Attended and Error-Inducing Input Regions for VQA Models
Applied AI Letters (AA), 2021
Arijit Ray
Michael Cogswell
Xiaoyu Lin
Kamran Alipour
Ajay Divakaran
Yi Yao
Giedrius Burachas
FAtt
147
5
0
26 Mar 2021
Towards interpretability of Mixtures of Hidden Markov Models
Negar Safinianaini
Henrik Bostrom
110
2
0
23 Mar 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
254
117
0
22 Mar 2021
Interpreting Deep Learning Models with Marginal Attribution by Conditioning on Quantiles
Data mining and knowledge discovery (DMKD), 2021
M. Merz
Ronald Richman
A. Tsanakas
M. Wüthrich
FAtt
132
13
0
22 Mar 2021
Trustworthy Transparency by Design
Valentin Zieglmeier
A. Pretschner
140
17
0
19 Mar 2021
Interpretable Deep Learning: Interpretation, Interpretability, Trustworthiness, and Beyond
Knowledge and Information Systems (KAIS), 2021
Xuhong Li
Haoyi Xiong
Xingjian Li
Xuanyu Wu
Xiao Zhang
Ji Liu
Jiang Bian
Dejing Dou
AAML
FaML
XAI
HAI
280
434
0
19 Mar 2021
XProtoNet: Diagnosis in Chest Radiography with Global and Local Explanations
Computer Vision and Pattern Recognition (CVPR), 2021
Eunji Kim
Siwon Kim
Minji Seo
Sungroh Yoon
ViT
FAtt
227
136
0
19 Mar 2021
Integrated Decision and Control: Towards Interpretable and Computationally Efficient Driving Intelligence
IEEE Transactions on Cybernetics (IEEE Trans. Cybern.), 2021
Yang Guan
Yangang Ren
Qi Sun
Shengbo Eben Li
Haitong Ma
Jingliang Duan
Yifan Dai
B. Cheng
180
85
0
18 Mar 2021
Interpretability of a Deep Learning Model in the Application of Cardiac MRI Segmentation with an ACDC Challenge Dataset
Adrianna Janik
J. Dodd
Georgiana Ifrim
Kris Sankaran
Kathleen M. Curran
129
38
0
15 Mar 2021
A Study of Automatic Metrics for the Evaluation of Natural Language Explanations
Conference of the European Chapter of the Association for Computational Linguistics (EACL), 2021
Miruna Clinciu
Arash Eshghi
H. Hastie
197
61
0
15 Mar 2021
Explanations in Autonomous Driving: A Survey
Daniel Omeiza
Helena Webb
Marina Jirotka
Lars Kunze
444
280
0
09 Mar 2021
A Comparative Approach to Explainable Artificial Intelligence Methods in Application to High-Dimensional Electronic Health Records: Examining the Usability of XAI
Jamie Duell
77
3
0
08 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Information Fusion (Inf. Fusion), 2021
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
367
217
0
07 Mar 2021
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction
ACM Conference on Health, Inference, and Learning (CHIL), 2021
Aniruddh Raghu
John Guttag
K. Young
E. Pomerantsev
Adrian Dalca
Collin M. Stultz
147
9
0
04 Mar 2021
Contrastive Explanations for Model Interpretability
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
379
108
0
02 Mar 2021
Interpretable Artificial Intelligence through the Lens of Feature Interaction
Michael Tsang
James Enouen
Yan Liu
FAtt
182
9
0
01 Mar 2021
Reasons, Values, Stakeholders: A Philosophical Framework for Explainable Artificial Intelligence
Conference on Fairness, Accountability and Transparency (FAccT), 2021
Atoosa Kasirzadeh
155
27
0
01 Mar 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
286
165
0
26 Feb 2021
Benchmarking and Survey of Explanation Methods for Black Box Models
Data mining and knowledge discovery (DMKD), 2021
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
354
277
0
25 Feb 2021
A Local Method for Identifying Causal Relations under Markov Equivalence
Artificial Intelligence (AI), 2021
Zhuangyan Fang
Yue Liu
Z. Geng
Shengyu Zhu
Yangbo He
CML
171
15
0
25 Feb 2021
Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing
Sarah Wiegreffe
Ana Marasović
XAI
469
161
0
24 Feb 2021
Artificial Intelligence as an Anti-Corruption Tool (AI-ACT) -- Potentials and Pitfalls for Top-down and Bottom-up Approaches
N. Köbis
C. Starke
Iyad Rahwan
138
13
0
23 Feb 2021
Interpret-able feedback for AutoML systems
Behnaz Arzani
Kevin Hsieh
Haoxian Chen
99
4
0
22 Feb 2021
Believe The HiPe: Hierarchical Perturbation for Fast, Robust, and Model-Agnostic Saliency Mapping
Pattern Recognition (Pattern Recogn.), 2021
Jessica Cooper
Ognjen Arandjelovic
David J. Harrison
AAML
322
18
0
22 Feb 2021
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs
International Conference on Intelligent User Interfaces (IUI), 2021
Harini Suresh
Kathleen M. Lewis
John Guttag
Arvind Satyanarayan
FAtt
227
29
0
17 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Artificial Intelligence (AI), 2021
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
257
493
0
15 Feb 2021
The human-AI relationship in decision-making: AI explanation to support people on justifying their decisions
J. Ferreira
Mateus de Souza Monteiro
210
23
0
10 Feb 2021
Principles of Explanation in Human-AI Systems
Shane T. Mueller
Elizabeth S. Veinott
R. Hoffman
Gary Klein
Lamia Alam
T. Mamun
W. Clancey
XAI
148
67
0
09 Feb 2021
Previous
1
2
3
...
19
20
21
...
25
26
27
Next