Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.07561
Cited By
A-NICE-MC: Adversarial Training for MCMC
23 June 2017
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDL
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A-NICE-MC: Adversarial Training for MCMC"
34 / 34 papers shown
Title
Score-Based Metropolis-Hastings Algorithms
Ahmed Aloui
Ali Hasan
Juncheng Dong
Zihao Wu
Vahid Tarokh
DiffM
43
0
0
31 Dec 2024
Hitchhiker's guide on the relation of Energy-Based Models with other generative models, sampling and statistical physics: a comprehensive review
Davide Carbone
38
1
0
19 Jun 2024
Energy-Guided Continuous Entropic Barycenter Estimation for General Costs
Alexander Kolesov
Petr Mokrov
Igor Udovichenko
Milena Gazdieva
G. Pammer
Anastasis Kratsios
Evgeny Burnaev
Alexander Korotin
OT
49
2
0
02 Oct 2023
Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning
Tim Schneider
A. Totounferoush
Wolfgang Nowak
Steffen Staab
26
0
0
14 Jun 2023
Optimal Preconditioning and Fisher Adaptive Langevin Sampling
Michalis K. Titsias
35
11
0
23 May 2023
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
A Diffusion-based Method for Multi-turn Compositional Image Generation
Chao Wang
DiffM
38
3
0
05 Apr 2023
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model
Xingqian Xu
Zhangyang Wang
Eric Zhang
Kai Wang
Humphrey Shi
DiffM
43
186
0
15 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Path Integral Sampler: a stochastic control approach for sampling
Qinsheng Zhang
Yongxin Chen
DiffM
18
101
0
30 Nov 2021
Estimating High Order Gradients of the Data Distribution by Denoising
Chenlin Meng
Yang Song
Wenzhe Li
Stefano Ermon
DiffM
13
45
0
08 Nov 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
31
1
0
03 Jun 2021
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Dian Wu
R. Rossi
Giuseppe Carleo
26
29
0
12 May 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
Orbital MCMC
Kirill Neklyudov
Max Welling
26
7
0
15 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
21
22
0
15 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
27
14
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
56
6,972
0
06 Oct 2020
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
18
36
0
30 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,042
0
19 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Batch Stationary Distribution Estimation
Junfeng Wen
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
22
22
0
02 Mar 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
16
107
0
15 Jan 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
57
1,631
0
05 Dec 2019
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
39
22
0
04 Nov 2019
Metropolis-Hastings view on variational inference and adversarial training
Kirill Neklyudov
Evgenii Egorov
Pavel Shvechikov
Dmitry Vetrov
GAN
29
13
0
16 Oct 2018
Stein Neural Sampler
Tianyang Hu
Zixiang Chen
Hanxi Sun
Jincheng Bai
Mao Ye
Guang Cheng
SyDa
GAN
22
34
0
08 Oct 2018
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
36
44
0
12 Jun 2018
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
28
433
0
03 Apr 2018
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
31
126
0
08 Feb 2018
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
223
0
06 Mar 2017
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,267
0
09 Jun 2012
1