Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08457
Cited By
v1
v2
v3
v4 (latest)
Iterative Random Forests to detect predictive and stable high-order interactions
26 June 2017
Sumanta Basu
Karl Kumbier
James B. Brown
Bin Yu
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Iterative Random Forests to detect predictive and stable high-order interactions"
34 / 34 papers shown
Title
Local MDI+: Local Feature Importances for Tree-Based Models
Zhongyuan Liang
Zachary T. Rewolinski
Abhineet Agarwal
Tiffany M. Tang
Bin Yu
25
0
0
10 Jun 2025
Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction
Maximilian Schuessler
Erik Sverdrup
Robert Tibshirani
CML
90
0
0
01 May 2025
Error-controlled non-additive interaction discovery in machine learning models
Winston Chen
Yifan Jiang
William Stafford Noble
Yang Young Lu
136
1
0
17 Feb 2025
Information-Theoretic Guarantees for Recovering Low-Rank Tensors from Symmetric Rank-One Measurements
Eren C. Kızıldağ
120
0
0
07 Feb 2025
Lessons from a human-in-the-loop machine learning approach for identifying vacant, abandoned, and deteriorated properties in Savannah, Georgia
Xiaofan Liang
Brian Brainerd
Tara Hicks
Clio Andris
34
0
0
15 Jul 2024
TrIM: Transformed Iterative Mondrian Forests for Gradient-based Dimension Reduction and High-Dimensional Regression
Ricardo Baptista
Eliza O'Reilly
Yangxinyu Xie
94
2
0
13 Jul 2024
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest
Shen-Huan Lyu
Jin-Hui Wu
Qin-Cheng Zheng
Baoliu Ye
97
0
0
06 Jul 2024
Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences
Dimitris Bertsimas
V. Digalakis
Yu Ma
Phevos Paschalidis
111
0
0
28 Mar 2024
The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance
J. Donnelly
Srikar Katta
Cynthia Rudin
E. Browne
FAtt
121
18
0
24 Sep 2023
Bagging Provides Assumption-free Stability
Jake A. Soloff
Rina Foygel Barber
Rebecca Willett
69
11
0
30 Jan 2023
Individualized and Global Feature Attributions for Gradient Boosted Trees in the Presence of
ℓ
2
\ell_2
ℓ
2
Regularization
Qingyao Sun
65
2
0
08 Nov 2022
Machine learning in bioprocess development: From promise to practice
L. M. Helleckes
J. Hemmerich
W. Wiechert
E. Lieres
A. Grünberger
74
50
0
04 Oct 2022
Local and Regional Counterfactual Rules: Summarized and Robust Recourses
Salim I. Amoukou
Nicolas Brunel
58
0
0
29 Sep 2022
Invariant Causal Mechanisms through Distribution Matching
Mathieu Chevalley
Charlotte Bunne
Andreas Krause
Stefan Bauer
OOD
CML
66
42
0
23 Jun 2022
Random Forest Weighted Local Fr\échet Regression with Random Objects
Rui Qiu
Zhou Yu
Ruoqing Zhu
185
5
0
10 Feb 2022
Hierarchical Shrinkage: improving the accuracy and interpretability of tree-based methods
Abhineet Agarwal
Yan Shuo Tan
Omer Ronen
Chandan Singh
Bin Yu
95
27
0
02 Feb 2022
Beyond Importance Scores: Interpreting Tabular ML by Visualizing Feature Semantics
Amirata Ghorbani
Dina Berenbaum
Maor Ivgi
Yuval Dafna
James Zou
FAtt
52
9
0
10 Nov 2021
A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds
Yan Shuo Tan
Abhineet Agarwal
Bin Yu
79
11
0
18 Oct 2021
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
FAtt
100
32
0
25 May 2021
Provable Boolean Interaction Recovery from Tree Ensemble obtained via Random Forests
Merle Behr
Yu Wang
Xiao Li
Bin Yu
75
13
0
23 Feb 2021
Learning High-Order Interactions via Targeted Pattern Search
M. Massi
N. R. Franco
Hanla A. Park
Andrea Manzoni
A. Paganoni
P. Zunino
28
5
0
23 Feb 2021
Stable discovery of interpretable subgroups via calibration in causal studies
Raaz Dwivedi
Yan Shuo Tan
Briton Park
Mian Wei
Kevin Horgan
D. Madigan
Bin Yu
CML
54
30
0
23 Aug 2020
Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest Feature Importance
Mattia Carletti
M. Terzi
Gian Antonio Susto
54
42
0
21 Jul 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
311
6,387
0
22 Oct 2019
A Debiased MDI Feature Importance Measure for Random Forests
Xiao Li
Yu Wang
Sumanta Basu
Karl Kumbier
Bin Yu
231
86
0
26 Jun 2019
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
62
14
0
18 May 2019
PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets
Sumukh Deshpande
J. Shuttleworth
Jianhua Yang
Sandy Taramonli
M. England
23
34
0
12 Feb 2019
Veridical Data Science
Bin Yu
Karl Kumbier
88
170
0
23 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
211
1,459
0
14 Jan 2019
Learning stable and predictive structures in kinetic systems: Benefits of a causal approach
Niklas Pfister
Stefan Bauer
J. Peters
CML
64
41
0
28 Oct 2018
Local Linear Forests
R. Friedberg
J. Tibshirani
Susan Athey
Stefan Wager
171
92
0
30 Jul 2018
MISSION: Ultra Large-Scale Feature Selection using Count-Sketches
Amirali Aghazadeh
Ryan Spring
Daniel LeJeune
Gautam Dasarathy
Anshumali Shrivastava
Richard G. Baraniuk
81
32
0
12 Jun 2018
Sparse and Low-rank Tensor Estimation via Cubic Sketchings
Botao Hao
Anru R. Zhang
Guang Cheng
106
51
0
29 Jan 2018
Artificial Intelligence and Statistics
Bin Yu
Karl Kumbier
75
164
0
08 Dec 2017
1