Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.10239
Cited By
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
30 June 2017
Lei Wu
Zhanxing Zhu
E. Weinan
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes"
8 / 8 papers shown
Title
DC is all you need: describing ReLU from a signal processing standpoint
Christodoulos Kechris
Jonathan Dan
Jose Miranda
David Atienza
41
3
0
23 Jul 2024
Information-Theoretic Generalization Bounds for Deep Neural Networks
Haiyun He
Christina Lee Yu
75
5
0
04 Apr 2024
Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks
Zhiwei Bai
Yaoyu Zhang
Z. Xu
Yaoyu Zhang
43
6
0
26 May 2022
Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond
Levent Sagun
Léon Bottou
Yann LeCun
UQCV
55
233
0
22 Nov 2016
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
Pratik Chaudhari
A. Choromańska
Stefano Soatto
Yann LeCun
Carlo Baldassi
C. Borgs
J. Chayes
Levent Sagun
R. Zecchina
ODL
63
769
0
06 Nov 2016
Topology and Geometry of Half-Rectified Network Optimization
C. Freeman
Joan Bruna
101
235
0
04 Nov 2016
Unreasonable Effectiveness of Learning Neural Networks: From Accessible States and Robust Ensembles to Basic Algorithmic Schemes
Carlo Baldassi
C. Borgs
J. Chayes
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
40
166
0
20 May 2016
Subdominant Dense Clusters Allow for Simple Learning and High Computational Performance in Neural Networks with Discrete Synapses
Carlo Baldassi
Alessandro Ingrosso
Carlo Lucibello
Luca Saglietti
R. Zecchina
32
127
0
18 Sep 2015
1