ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.01415
  4. Cited By
Machine Learning, Deepest Learning: Statistical Data Assimilation
  Problems

Machine Learning, Deepest Learning: Statistical Data Assimilation Problems

5 July 2017
H. Abarbanel
P. Rozdeba
S. Shirman
    PINN
ArXiv (abs)PDFHTML

Papers citing "Machine Learning, Deepest Learning: Statistical Data Assimilation Problems"

24 / 24 papers shown
Probabilistic Emulation of the Community Radiative Transfer Model Using Machine Learning
Probabilistic Emulation of the Community Radiative Transfer Model Using Machine Learning
Lucas Howard
Aneesh C. Subramanian
Gregory Thompson
Benjamin Johnson
Thomas Auligne
274
1
0
22 Apr 2025
Message Propagation Through Time: An Algorithm for Sequence Dependency
  Retention in Time Series Modeling
Message Propagation Through Time: An Algorithm for Sequence Dependency Retention in Time Series ModelingSDM (SDM), 2023
Shaoming Xu
A. Khandelwal
Arvind Renganathan
Vipin Kumar
AI4TS
142
1
0
28 Sep 2023
Learning 4DVAR inversion directly from observations
Learning 4DVAR inversion directly from observationsInternational Conference on Conceptual Structures (ICCS), 2022
Arthur Filoche
J. Brajard
A. Charantonis
Dominique Béréziat
130
3
0
17 Nov 2022
Online model error correction with neural networks in the incremental
  4D-Var framework
Online model error correction with neural networks in the incremental 4D-Var frameworkJournal of Advances in Modeling Earth Systems (JAMES), 2022
A. Farchi
M. Chrust
Marc Bocquet
P. Laloyaux
Massimo Bonavita
260
32
0
25 Oct 2022
Learning Spatiotemporal Chaos Using Next-Generation Reservoir Computing
Learning Spatiotemporal Chaos Using Next-Generation Reservoir ComputingChaos (Chaos), 2022
W. A. S. Barbosa
D. Gauthier
306
41
0
24 Mar 2022
A Systematic Exploration of Reservoir Computing for Forecasting Complex
  Spatiotemporal Dynamics
A Systematic Exploration of Reservoir Computing for Forecasting Complex Spatiotemporal DynamicsNeural Networks (NN), 2022
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
260
53
0
21 Jan 2022
On the difficulty of learning chaotic dynamics with RNNs
On the difficulty of learning chaotic dynamics with RNNs
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
399
78
0
14 Oct 2021
Integrating Recurrent Neural Networks with Data Assimilation for
  Scalable Data-Driven State Estimation
Integrating Recurrent Neural Networks with Data Assimilation for Scalable Data-Driven State EstimationJournal of Advances in Modeling Earth Systems (JAMES), 2021
S. Penny
T. A. Smith
Tse-Chun Chen
Jason A. Platt
Hsin-Yi Lin
M. Goodliff
H. Abarbanel
AI4CE
196
52
0
25 Sep 2021
Combining machine learning and data assimilation to forecast dynamical
  systems from noisy partial observations
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observationsChaos (Chaos), 2021
Georg Gottwald
Sebastian Reich
AI4CE
230
41
0
08 Aug 2021
A comparison of combined data assimilation and machine learning methods
  for offline and online model error correction
A comparison of combined data assimilation and machine learning methods for offline and online model error correctionJournal of Computer Science (JCS), 2021
A. Farchi
Marc Bocquet
P. Laloyaux
Massimo Bonavita
Quentin Malartic
OffRL
261
48
0
23 Jul 2021
Machine learning-based conditional mean filter: a generalization of the
  ensemble Kalman filter for nonlinear data assimilation
Machine learning-based conditional mean filter: a generalization of the ensemble Kalman filter for nonlinear data assimilationFoundations of Data Science (FODS), 2021
Truong-Vinh Hoang
S. Krumscheid
H. Matthies
Raúl Tempone
184
8
0
15 Jun 2021
Bridging observation, theory and numerical simulation of the ocean using
  Machine Learning
Bridging observation, theory and numerical simulation of the ocean using Machine LearningEnvironmental Research Letters (ERL), 2021
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4ClAI4CE
288
120
0
26 Apr 2021
Hybrid analysis and modeling, eclecticism, and multifidelity computing
  toward digital twin revolution
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolutionGAMM-Mitteilungen (GAMM-Mitteilungen), 2021
Omer San
Adil Rasheed
T. Kvamsdal
174
62
0
26 Mar 2021
Towards physically consistent data-driven weather forecasting:
  Integrating data assimilation with equivariance-preserving deep spatial
  transformers
Towards physically consistent data-driven weather forecasting: Integrating data assimilation with equivariance-preserving deep spatial transformers
Ashesh Chattopadhyay
M. Mustafa
Pedram Hassanzadeh
Eviatar Bach
K. Kashinath
AI4CE
201
25
0
16 Mar 2021
Using machine learning to correct model error in data assimilation and
  forecast applications
Using machine learning to correct model error in data assimilation and forecast applicationsQuarterly Journal of the Royal Meteorological Society (QJRMS), 2020
A. Farchi
P. Laloyaux
Massimo Bonavita
Marc Bocquet
AI4CE
183
130
0
23 Oct 2020
Supervised learning from noisy observations: Combining machine-learning
  techniques with data assimilation
Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation
Georg Gottwald
Sebastian Reich
AI4CE
109
63
0
14 Jul 2020
Online learning of both state and dynamics using ensemble Kalman filters
Online learning of both state and dynamics using ensemble Kalman filters
Marc Bocquet
A. Farchi
Quentin Malartic
196
30
0
06 Jun 2020
Bayesian inference of chaotic dynamics by merging data assimilation,
  machine learning and expectation-maximization
Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximizationFoundations of Data Science (FDS), 2020
Marc Bocquet
J. Brajard
A. Carrassi
Laurent Bertino
120
117
0
17 Jan 2020
Combining data assimilation and machine learning to emulate a dynamical
  model from sparse and noisy observations: a case study with the Lorenz 96
  model
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 modelJournal of Computer Science (JCS), 2019
J. Brajard
A. Carrassi
Marc Bocquet
Laurent Bertino
241
254
0
06 Jan 2020
Precision annealing Monte Carlo methods for statistical data
  assimilation and machine learning
Precision annealing Monte Carlo methods for statistical data assimilation and machine learningPhysical Review Research (PRR), 2019
Zheng Fang
Adrian S. Wong
Kangbo Hao
Alexander J. A. Ty
H. Abarbanel
119
1
0
06 Jul 2019
Deep learning as optimal control problems: models and numerical methods
Deep learning as optimal control problems: models and numerical methods
Martin Benning
E. Celledoni
Matthias Joachim Ehrhardt
B. Owren
Carola-Bibiane Schönlieb
253
88
0
11 Apr 2019
Identifying nonlinear dynamical systems via generative recurrent neural
  networks with applications to fMRI
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
230
87
0
19 Feb 2019
Machine Learning of Time Series Using Time-delay Embedding and Precision
  Annealing
Machine Learning of Time Series Using Time-delay Embedding and Precision AnnealingNeural Computation (Neural Comput.), 2019
Alexander J. A. Ty
Zheng Fang
Rivver A. Gonzales
P. Rozdeba
H. Abarbanel
AI4TS
167
10
0
12 Feb 2019
Precision Annealing Monte Carlo Methods for Statistical Data
  Assimilation: Metropolis-Hastings Procedures
Precision Annealing Monte Carlo Methods for Statistical Data Assimilation: Metropolis-Hastings Procedures
Adrian S. Wong
Kangbo Hao
Zheng Fang
H. Abarbanel
108
1
0
14 Jan 2019
1