Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.04780
Cited By
Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science
15 July 2017
Decebal Constantin Mocanu
Elena Mocanu
Peter Stone
Phuong H. Nguyen
M. Gibescu
A. Liotta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Training of Artificial Neural Networks with Adaptive Sparse Connectivity inspired by Network Science"
24 / 24 papers shown
Title
Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
Chuan Sun
Han Yu
Lizhen Cui
Xiaoxiao Li
320
2
0
03 May 2025
Sparse-to-Sparse Training of Diffusion Models
Inês Cardoso Oliveira
Decebal Constantin Mocanu
Luis A. Leiva
DiffM
116
0
0
30 Apr 2025
E2ENet: Dynamic Sparse Feature Fusion for Accurate and Efficient 3D Medical Image Segmentation
Boqian Wu
Q. Xiao
Shiwei Liu
Lu Yin
Mykola Pechenizkiy
Decebal Constantin Mocanu
M. V. Keulen
Elena Mocanu
MedIm
94
5
0
20 Feb 2025
Brain network science modelling of sparse neural networks enables Transformers and LLMs to perform as fully connected
Yingtao Zhang
Diego Cerretti
Jialin Zhao
Wenjing Wu
Ziheng Liao
Umberto Michieli
C. Cannistraci
90
1
0
31 Jan 2025
SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
Tianjin Huang
Ziquan Zhu
Gaojie Jin
Lu Liu
Zhangyang Wang
Shiwei Liu
77
3
0
12 Jan 2025
Pushing the Limits of Sparsity: A Bag of Tricks for Extreme Pruning
Andy Li
A. Durrant
Milan Markovic
Lu Yin
Georgios Leontidis
Tianlong Chen
Lu Yin
Georgios Leontidis
121
0
0
20 Nov 2024
Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training
Elia Cunegatti
Leonardo Lucio Custode
Giovanni Iacca
84
0
0
11 Nov 2024
Layer-Adaptive State Pruning for Deep State Space Models
Minseon Gwak
Seongrok Moon
Joohwan Ko
PooGyeon Park
80
0
0
05 Nov 2024
Navigating Extremes: Dynamic Sparsity in Large Output Spaces
Nasib Ullah
Erik Schultheis
Mike Lasby
Yani Andrew Ioannou
Rohit Babbar
52
0
0
05 Nov 2024
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Boqian Wu
Q. Xiao
Shunxin Wang
N. Strisciuglio
Mykola Pechenizkiy
M. V. Keulen
Decebal Constantin Mocanu
Elena Mocanu
OOD
3DH
137
2
0
03 Oct 2024
Always-Sparse Training by Growing Connections with Guided Stochastic Exploration
Mike Heddes
Narayan Srinivasa
T. Givargis
Alexandru Nicolau
162
0
0
12 Jan 2024
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
Sebastian Pokutta
VLM
86
10
0
23 Dec 2023
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
70
690
0
18 Dec 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
173
8,807
0
25 Aug 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
72
1,523
0
10 Mar 2017
Evolving Deep Neural Networks
Risto Miikkulainen
J. Liang
Elliot Meyerson
Aditya Rawal
Daniel Fink
...
B. Raju
Hormoz Shahrzad
Arshak Navruzyan
Nigel P. Duffy
Babak Hodjat
74
886
0
01 Mar 2017
The Power of Sparsity in Convolutional Neural Networks
Soravit Changpinyo
Mark Sandler
A. Zhmoginov
48
132
0
21 Feb 2017
Neural networks with differentiable structure
Thomas Miconi
55
13
0
20 Jun 2016
Theano: A Python framework for fast computation of mathematical expressions
The Theano Development Team
Rami Al-Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermüller
...
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
135
2,338
0
09 May 2016
A topological insight into restricted Boltzmann machines
Decebal Constantin Mocanu
Elena Mocanu
Phuong H. Nguyen
M. Gibescu
A. Liotta
BDL
29
100
0
20 Apr 2016
Deep Learning with S-shaped Rectified Linear Activation Units
Xiaojie Jin
Chunyan Xu
Jiashi Feng
Yunchao Wei
Junjun Xiong
Shuicheng Yan
194
217
0
22 Dec 2015
How far can we go without convolution: Improving fully-connected networks
Zhouhan Lin
Roland Memisevic
K. Konda
54
50
0
09 Nov 2015
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
247
6,628
0
08 Jun 2015
Fast ConvNets Using Group-wise Brain Damage
V. Lebedev
Victor Lempitsky
AAML
119
448
0
08 Jun 2015
1