Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1707.07113
Cited By
Adversarial Variational Optimization of Non-Differentiable Simulators
22 July 2017
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Variational Optimization of Non-Differentiable Simulators"
20 / 20 papers shown
Title
Predictive variational inference: Learn the predictively optimal posterior distribution
Jinlin Lai
Yuling Yao
BDL
31
0
0
18 Oct 2024
End-to-End Mesh Optimization of a Hybrid Deep Learning Black-Box PDE Solver
Shaocong Ma
James Diffenderfer
B. Kailkhura
Yi Zhou
AI4CE
40
0
0
17 Apr 2024
Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing
Nataniel Ruiz
Sarah Adel Bargal
Cihang Xie
Kate Saenko
Stan Sclaroff
ViT
33
5
0
29 Nov 2022
Human Body Measurement Estimation with Adversarial Augmentation
Nataniel Ruiz
Míriam Bellver
Timo Bolkart
Ambuj Arora
Ming-Chia Lin
Javier Romero
Raj Bala
3DH
37
3
0
11 Oct 2022
Compositional Score Modeling for Simulation-based Inference
Tomas Geffner
George Papamakarios
A. Mnih
69
24
0
28 Sep 2022
Neural-Sim: Learning to Generate Training Data with NeRF
Yunhao Ge
Harkirat Singh Behl
Jiashu Xu
Suriya Gunasekar
Neel Joshi
Ya-heng Song
Xin Eric Wang
Laurent Itti
Vibhav Vineet
29
33
0
22 Jul 2022
Goldilocks-curriculum Domain Randomization and Fractal Perlin Noise with Application to Sim2Real Pneumonia Lesion Detection
Takahiro Suzuki
S. Hanaoka
Issei Sato
OOD
MedIm
26
1
0
29 Apr 2022
Task2Sim : Towards Effective Pre-training and Transfer from Synthetic Data
Samarth Mishra
Rameswar Panda
Cheng Perng Phoo
Chun-Fu Chen
Leonid Karlinsky
Kate Saenko
Venkatesh Saligrama
Rogerio Feris
26
33
0
30 Nov 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
90
0
02 Mar 2021
Neural Empirical Bayes: Source Distribution Estimation and its Applications to Simulation-Based Inference
M. Vandegar
Michael Kagan
Antoine Wehenkel
Gilles Louppe
16
27
0
11 Nov 2020
Generalised Bayes Updates with
f
f
f
-divergences through Probabilistic Classifiers
Owen Thomas
Henri Pesonen
J. Corander
FedML
26
2
0
08 Jul 2020
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
23
14
0
04 Jun 2019
Meta-Sim: Learning to Generate Synthetic Datasets
Amlan Kar
Aayush Prakash
Ming-Yu Liu
Eric Cameracci
Justin Yuan
Matt Rusiniak
David Acuna
Antonio Torralba
Sanja Fidler
11
247
0
25 Apr 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
29
20
0
10 Mar 2019
Learning To Simulate
Nataniel Ruiz
S. Schulter
Manmohan Chandraker
27
119
0
05 Oct 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Synthesizing Programs for Images using Reinforced Adversarial Learning
Yaroslav Ganin
Tejas D. Kulkarni
Igor Babuschkin
A. Eslami
Oriol Vinyals
GAN
12
229
0
03 Apr 2018
Variational Inference over Non-differentiable Cardiac Simulators using Bayesian Optimization
Adam McCarthy
Blanca Rodriguez
A. Mincholé
36
5
0
09 Dec 2017
Variational Optimization
J. Staines
David Barber
DRL
65
53
0
18 Dec 2012
1