ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.08945
  4. Cited By
Robust Physical-World Attacks on Deep Learning Models

Robust Physical-World Attacks on Deep Learning Models

27 July 2017
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
Amir Rahmati
Chaowei Xiao
Atul Prakash
Tadayoshi Kohno
D. Song
    AAML
ArXivPDFHTML

Papers citing "Robust Physical-World Attacks on Deep Learning Models"

28 / 28 papers shown
Title
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
68
73
0
07 Aug 2020
Note on Attacking Object Detectors with Adversarial Stickers
Note on Attacking Object Detectors with Adversarial Stickers
Kevin Eykholt
Ivan Evtimov
Earlence Fernandes
Yue Liu
D. Song
Tadayoshi Kohno
Amir Rahmati
A. Prakash
Florian Tramèr
AAML
43
36
0
21 Dec 2017
IFTTT vs. Zapier: A Comparative Study of Trigger-Action Programming
  Frameworks
IFTTT vs. Zapier: A Comparative Study of Trigger-Action Programming Frameworks
Amir Rahmati
Earlence Fernandes
Jaeyeon Jung
A. Prakash
8
35
0
08 Sep 2017
Evasion Attacks against Machine Learning at Test Time
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
101
2,142
0
21 Aug 2017
Houdini: Fooling Deep Structured Prediction Models
Houdini: Fooling Deep Structured Prediction Models
Moustapha Cissé
Yossi Adi
Natalia Neverova
Joseph Keshet
AAML
41
269
0
17 Jul 2017
NO Need to Worry about Adversarial Examples in Object Detection in
  Autonomous Vehicles
NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles
Jiajun Lu
Hussein Sibai
Evan Fabry
David A. Forsyth
AAML
65
280
0
12 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
231
11,962
0
19 Jun 2017
Delving into adversarial attacks on deep policies
Delving into adversarial attacks on deep policies
Jernej Kos
D. Song
AAML
47
224
0
18 May 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
111
287
0
19 Apr 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
85
928
0
24 Mar 2017
Adversarial examples for generative models
Adversarial examples for generative models
Jernej Kos
Ian S. Fischer
D. Song
GAN
51
273
0
22 Feb 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
65
832
0
08 Feb 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
123
1,727
0
08 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
113
2,520
0
26 Oct 2016
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
Nicolas Papernot
Fartash Faghri
Nicholas Carlini
Ian Goodfellow
Reuben Feinman
...
David Berthelot
P. Hendricks
Jonas Rauber
Rujun Long
Patrick McDaniel
AAML
49
512
0
03 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
76
1,798
0
09 Sep 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
170
8,513
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
494
5,878
0
08 Jul 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
81
1,735
0
24 May 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
49
3,660
0
08 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
495
27,231
0
02 Dec 2015
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
66
3,947
0
24 Nov 2015
Adversarial Manipulation of Deep Representations
Adversarial Manipulation of Deep Representations
S. Sabour
Yanshuai Cao
Fartash Faghri
David J. Fleet
GAN
AAML
64
286
0
16 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
95
4,878
0
14 Nov 2015
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion
  Control
Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control
Fangyi Zhang
Jurgen Leitner
Michael Milford
B. Upcroft
Peter Corke
46
274
0
12 Nov 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
193
13,174
0
09 Sep 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
176
18,922
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
185
14,831
1
21 Dec 2013
1