ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.09571
  4. Cited By
Deep Potential Molecular Dynamics: a scalable model with the accuracy of
  quantum mechanics
v1v2 (latest)

Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics

30 July 2017
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
ArXiv (abs)PDFHTML

Papers citing "Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics"

50 / 125 papers shown
Title
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNNAI4CE
72
60
0
06 Dec 2021
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
Tian Zheng
Weihao Gao
Chong-Jun Wang
AI4CE
68
4
0
30 Nov 2021
Deep Molecular Representation Learning via Fusing Physical and Chemical
  Information
Deep Molecular Representation Learning via Fusing Physical and Chemical Information
Shuwen Yang
Ziyao Li
Guojie Song
Lingsheng Cai
AI4CE
102
31
0
28 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINNAI4CE
63
98
0
02 Nov 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CEViT
78
16
0
26 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
212
87
0
06 Oct 2021
Complex Spin Hamiltonian Represented by Artificial Neural Network
Complex Spin Hamiltonian Represented by Artificial Neural Network
Hongyu Yu
Changsong Xu
Feng Lou
L. Bellaiche
Zhenpeng Hu
X. Gong
H. Xiang
73
15
0
02 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for
  Molecules and Materials Based on Gaussian Moments
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
72
21
0
20 Sep 2021
Heterogeneous relational message passing networks for molecular dynamics
  simulations
Heterogeneous relational message passing networks for molecular dynamics simulations
Zun Wang
Chong Wang
Sibo Zhao
Yong Xu
Shaogang Hao
Chang-Yu Hsieh
B. Gu
W. Duan
42
26
0
02 Sep 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CEPINN
125
69
0
02 Jul 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
83
29
0
14 Jun 2021
Learning Full Configuration Interaction Electron Correlations with Deep
  Learning
Learning Full Configuration Interaction Electron Correlations with Deep Learning
H. Corzo
Arijit Sehanobish
Onur Kara
39
2
0
08 Jun 2021
Informing Geometric Deep Learning with Electronic Interactions to
  Accelerate Quantum Chemistry
Informing Geometric Deep Learning with Electronic Interactions to Accelerate Quantum Chemistry
Zhuoran Qiao
Anders S. Christensen
Matthew Welborn
F. Manby
Anima Anandkumar
Thomas F. Miller
134
74
0
31 May 2021
Arrested phase separation in double-exchange models: machine-learning
  enabled large-scale simulation
Arrested phase separation in double-exchange models: machine-learning enabled large-scale simulation
Puhan Zhang
Gia-Wei Chern
20
5
0
18 May 2021
BubbleNet: Inferring micro-bubble dynamics with semi-physics-informed
  deep learning
BubbleNet: Inferring micro-bubble dynamics with semi-physics-informed deep learning
Hanfeng Zhai
Quan Zhou
G. Hu
PINNAI4CE
65
16
0
15 May 2021
Machine learning moment closure models for the radiative transfer
  equation I: directly learning a gradient based closure
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
Juntao Huang
Yingda Cheng
Andrew J. Christlieb
L. Roberts
AI4CE
60
31
0
12 May 2021
Learning Gradient Fields for Molecular Conformation Generation
Learning Gradient Fields for Molecular Conformation Generation
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffMAI4CE
109
216
0
09 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
236
255
0
01 May 2021
Frame-independent vector-cloud neural network for nonlocal constitutive
  modeling on arbitrary grids
Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary grids
Xueqing Zhou
Jiequn Han
Heng Xiao
82
31
0
11 Mar 2021
Error Estimates for the Deep Ritz Method with Boundary Penalty
Error Estimates for the Deep Ritz Method with Boundary Penalty
Johannes Müller
Marius Zeinhofer
93
17
0
01 Mar 2021
A Mathematical Principle of Deep Learning: Learn the Geodesic Curve in
  the Wasserstein Space
A Mathematical Principle of Deep Learning: Learn the Geodesic Curve in the Wasserstein Space
Kuo Gai
Shihua Zhang
103
8
0
18 Feb 2021
A Universal Framework for Featurization of Atomistic Systems
A Universal Framework for Featurization of Atomistic Systems
Xiangyun Lei
A. Medford
AI4CE
89
19
0
04 Feb 2021
Linear Frequency Principle Model to Understand the Absence of
  Overfitting in Neural Networks
Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks
Yaoyu Zhang
Yaoyu Zhang
Zheng Ma
Zhi-Qin John Xu
62
21
0
30 Jan 2021
Differentiable sampling of molecular geometries with uncertainty-based
  adversarial attacks
Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks
Daniel Schwalbe-Koda
Aik Rui Tan
Rafael Gómez-Bombarelli
AAML
98
63
0
27 Jan 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
324
1,340
0
08 Jan 2021
Symmetry-adapted graph neural networks for constructing molecular
  dynamics force fields
Symmetry-adapted graph neural networks for constructing molecular dynamics force fields
Zun Wang
Chong Wang
Sibo Zhao
Shiqiao Du
Yong Xu
B. Gu
W. Duan
AI4CE
108
14
0
08 Jan 2021
Wide-band butterfly network: stable and efficient inversion via
  multi-frequency neural networks
Wide-band butterfly network: stable and efficient inversion via multi-frequency neural networks
Matthew T.C. Li
L. Demanet
Leonardo Zepeda-Núnez
84
9
0
24 Nov 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
145
940
0
14 Oct 2020
Efficient Long-Range Convolutions for Point Clouds
Efficient Long-Range Convolutions for Point Clouds
Yifan Peng
Lin Lin
Lexing Ying
Leonardo Zepeda-Núnez
3DPC
47
8
0
11 Oct 2020
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
  Deep Neural Networks
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
58
40
0
10 Oct 2020
Learning Thermodynamically Stable and Galilean Invariant Partial
  Differential Equations for Non-equilibrium Flows
Learning Thermodynamically Stable and Galilean Invariant Partial Differential Equations for Non-equilibrium Flows
Juntao Huang
Zhiting Ma
Y. Zhou
W. Yong
AI4CE
63
16
0
28 Sep 2020
Machine Learning and Computational Mathematics
Machine Learning and Computational Mathematics
Weinan E
PINNAI4CE
88
62
0
23 Sep 2020
Multi-scale approach for the prediction of atomic scale properties
Multi-scale approach for the prediction of atomic scale properties
Andrea Grisafi
Jigyasa Nigam
Michele Ceriotti
43
31
0
27 Aug 2020
Bayesian Force Fields from Active Learning for Simulation of
  Inter-Dimensional Transformation of Stanene
Bayesian Force Fields from Active Learning for Simulation of Inter-Dimensional Transformation of Stanene
Yu Xie
Jonathan Vandermause
Lixin Sun
Andrea Cepellotti
Boris Kozinsky
24
3
0
26 Aug 2020
Machine Learning in Nano-Scale Biomedical Engineering
Machine Learning in Nano-Scale Biomedical Engineering
Alexandros-Apostolos A. Boulogeorgos
Stylianos E. Trevlakis
Sotiris A. Tegos
V. Papanikolaou
G. Karagiannidis
AI4CE
41
30
0
05 Aug 2020
DeePKS: a comprehensive data-driven approach towards chemically accurate
  density functional theory
DeePKS: a comprehensive data-driven approach towards chemically accurate density functional theory
Yixiao Chen
Linfeng Zhang
Han Wang
E. Weinan
76
73
0
01 Aug 2020
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
125
162
0
22 Jul 2020
Deep Learning in Protein Structural Modeling and Design
Deep Learning in Protein Structural Modeling and Design
Wenhao Gao
S. Mahajan
Jeremias Sulam
Jeffrey J. Gray
89
161
0
16 Jul 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
91
218
0
15 Jul 2020
Deep Learning for UV Absorption Spectra with SchNarc: First Steps
  Towards Transferability in Chemical Compound Space
Deep Learning for UV Absorption Spectra with SchNarc: First Steps Towards Transferability in Chemical Compound Space
Julia Westermayr
P. Marquetand
93
53
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
71
266
0
10 Jul 2020
Geometric Prediction: Moving Beyond Scalars
Geometric Prediction: Moving Beyond Scalars
Raphael J. L. Townshend
Brent Townshend
Stephan Eismann
R. Dror
79
7
0
25 Jun 2020
Machine learning dynamics of phase separation in correlated electron
  magnets
Machine learning dynamics of phase separation in correlated electron magnets
Puhan Zhang
P. Saha
Gia-Wei Chern
31
16
0
07 Jun 2020
Integrating Machine Learning with Physics-Based Modeling
Integrating Machine Learning with Physics-Based Modeling
E. Weinan
Jiequn Han
Linfeng Zhang
PINNAI4CE
68
24
0
04 Jun 2020
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of
  Material Properties
Wavelet Scattering Networks for Atomistic Systems with Extrapolation of Material Properties
Paul Sinz
M. Swift
Xavier Brumwell
Jialin Liu
K. Kim
Y. Qi
M. Hirn
55
12
0
01 Jun 2020
Machine learning and excited-state molecular dynamics
Machine learning and excited-state molecular dynamics
Julia Westermayr
P. Marquetand
AI4CE
66
56
0
28 May 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with
  a Kernel Approach
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
138
46
0
04 May 2020
A Perspective on Deep Learning for Molecular Modeling and Simulations
A Perspective on Deep Learning for Molecular Modeling and Simulations
Jun Zhang
Yao-Kun Lei
Zhen Zhang
Junhan Chang
Maodong Li
Xu Han
Lijiang Yang
Yue Yang
Y. Gao
AI4CE
116
8
0
25 Apr 2020
PFNN: A Penalty-Free Neural Network Method for Solving a Class of
  Second-Order Boundary-Value Problems on Complex Geometries
PFNN: A Penalty-Free Neural Network Method for Solving a Class of Second-Order Boundary-Value Problems on Complex Geometries
H. Sheng
Chao Yang
67
118
0
14 Apr 2020
Autonomous discovery in the chemical sciences part I: Progress
Autonomous discovery in the chemical sciences part I: Progress
Connor W. Coley
Natalie S. Eyke
K. Jensen
71
218
0
30 Mar 2020
Previous
123
Next