ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00257
  4. Cited By
Robust PCA by Manifold Optimization
v1v2v3 (latest)

Robust PCA by Manifold Optimization

1 August 2017
Teng Zhang
Yi Yang
ArXiv (abs)PDFHTML

Papers citing "Robust PCA by Manifold Optimization"

14 / 14 papers shown
Title
GaLore$+$: Boosting Low-Rank Adaptation for LLMs with Cross-Head Projection
GaLore+++: Boosting Low-Rank Adaptation for LLMs with Cross-Head Projection
Xutao Liao
Shaohui Li
Yuhui Xu
Zhi Li
Yebin Liu
You He
VLM
121
6
0
31 Dec 2024
Structured Sampling for Robust Euclidean Distance Geometry
Structured Sampling for Robust Euclidean Distance Geometry
Chandra Kundu
Abiy Tasissa
HanQin Cai
170
1
0
14 Dec 2024
LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient
  Language Model Finetuning
LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
Han Guo
P. Greengard
Eric P. Xing
Yoon Kim
MQ
132
57
0
20 Nov 2023
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape
  Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
52
7
0
29 Sep 2022
Nonconvex Factorization and Manifold Formulations are Almost Equivalent
  in Low-rank Matrix Optimization
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
83
11
0
03 Aug 2021
Accurate and fast matrix factorization for low-rank learning
Accurate and fast matrix factorization for low-rank learning
R. Godaz
R. Monsefi
F. Toutounian
Reshad Hosseini
11
0
0
21 Apr 2021
Unlabeled Principal Component Analysis and Matrix Completion
Unlabeled Principal Component Analysis and Matrix Completion
Yu Yao
Liangzu Peng
M. Tsakiris
85
14
0
23 Jan 2021
Recursive Importance Sketching for Rank Constrained Least Squares:
  Algorithms and High-order Convergence
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
76
16
0
17 Nov 2020
Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
  Gradient Continuation Method
Robust Low-rank Matrix Completion via an Alternating Manifold Proximal Gradient Continuation Method
Minhui Huang
Shiqian Ma
Lifeng Lai
65
26
0
18 Aug 2020
Depth Descent Synchronization in $\mathrm{SO}(D)$
Depth Descent Synchronization in SO(D)\mathrm{SO}(D)SO(D)
Tyler Maunu
Gilad Lerman
MDE
67
2
0
13 Feb 2020
Efficiently escaping saddle points on manifolds
Efficiently escaping saddle points on manifolds
Christopher Criscitiello
Nicolas Boumal
90
63
0
10 Jun 2019
Subgradient Descent Learns Orthogonal Dictionaries
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
163
51
0
25 Oct 2018
Efficient Optimization Algorithms for Robust Principal Component
  Analysis and Its Variants
Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants
Shiqian Ma
N. Aybat
83
51
0
09 Jun 2018
A Nonconvex Projection Method for Robust PCA
A Nonconvex Projection Method for Robust PCA
Aritra Dutta
Filip Hanzely
Peter Richtárik
58
24
0
21 May 2018
1