ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.00955
  4. Cited By
Hamiltonian Monte Carlo with Energy Conserving Subsampling
v1v2v3 (latest)

Hamiltonian Monte Carlo with Energy Conserving Subsampling

2 August 2017
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
ArXiv (abs)PDFHTML

Papers citing "Hamiltonian Monte Carlo with Energy Conserving Subsampling"

23 / 23 papers shown
Title
Bayesian neural networks with interpretable priors from Mercer kernels
Bayesian neural networks with interpretable priors from Mercer kernels
A. Alberts
Ilias Bilionis
UQCVBDL
228
0
0
27 Oct 2025
Uncertainty Quantification of Graph Convolution Neural Network Models of
  Evolving Processes
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
Cosmin Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDLUQCV
248
2
0
17 Feb 2024
Optimal subsampling for large scale Elastic-net regression
Optimal subsampling for large scale Elastic-net regression
Hang Yu
Zhenxing Dou
Zhiwei Chen
Xiaomeng Yan
144
0
0
24 May 2023
Bayes Hilbert Spaces for Posterior Approximation
Bayes Hilbert Spaces for Posterior Approximation
George Wynne
179
2
0
18 Apr 2023
Physics-informed Information Field Theory for Modeling Physical Systems
  with Uncertainty Quantification
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty QuantificationJournal of Computational Physics (JCP), 2023
A. Alberts
Ilias Bilionis
306
16
0
18 Jan 2023
Grassmann Stein Variational Gradient Descent
Grassmann Stein Variational Gradient DescentInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Xingtu Liu
Harrison Zhu
Jean-François Ton
George Wynne
Andrew Duncan
249
13
0
07 Feb 2022
Metropolis Augmented Hamiltonian Monte Carlo
Metropolis Augmented Hamiltonian Monte Carlo
Guangyao Zhou
204
2
0
20 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance SamplingInternational Conference on Machine Learning (ICML), 2021
M. Jankowiak
Du Phan
BDL
185
13
0
22 Dec 2021
Spectral Subsampling MCMC for Stationary Multivariate Time Series with
  Applications to Vector ARTFIMA Processes
Spectral Subsampling MCMC for Stationary Multivariate Time Series with Applications to Vector ARTFIMA ProcessesEconometrics and Statistics (ES), 2021
M. Villani
M. Quiroz
Robert Kohn
R. Salomone
AI4TS
130
9
0
05 Apr 2021
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal
  approach
On MCMC for variationally sparse Gaussian processes: A pseudo-marginal approach
Karla Monterrubio-Gómez
S. Wade
128
2
0
04 Mar 2021
Truncated Log-concave Sampling with Reflective Hamiltonian Monte Carlo
Truncated Log-concave Sampling with Reflective Hamiltonian Monte CarloACM Transactions on Mathematical Software (TOMS), 2021
Apostolos Chalkis
Vissarion Fisikopoulos
Marios Papachristou
Elias P. Tsigaridas
219
8
0
25 Feb 2021
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Laplacian Smoothing Stochastic Gradient Markov Chain Monte CarloSIAM Journal on Scientific Computing (SISC), 2019
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
84
9
0
02 Nov 2019
Spectral Subsampling MCMC for Stationary Time Series
Spectral Subsampling MCMC for Stationary Time SeriesInternational Conference on Machine Learning (ICML), 2019
R. Salomone
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
AI4TS
192
15
0
30 Oct 2019
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin DynamicsAAAI Conference on Artificial Intelligence (AAAI), 2019
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
185
1
0
21 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model ChoiceBayesian Analysis (BA), 2019
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
272
5
0
10 Oct 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
135
12
0
25 Mar 2019
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large
  Datasets
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
R. Cornish
Paul Vanetti
Alexandre Bouchard-Côté
George Deligiannidis
Arnaud Doucet
208
20
0
28 Jan 2019
Targeted stochastic gradient Markov chain Monte Carlo for hidden Markov
  models with rare latent states
Targeted stochastic gradient Markov chain Monte Carlo for hidden Markov models with rare latent states
Rihui Ou
Deborshee Sen
Alexander L. Young
David B. Dunson
BDL
126
0
0
31 Oct 2018
Subsampling MCMC - An introduction for the survey statistician
Subsampling MCMC - An introduction for the survey statistician
M. Quiroz
M. Villani
Robert Kohn
Minh-Ngoc Tran
Khue-Dung Dang
228
24
0
23 Jul 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
254
52
0
08 May 2018
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte CarloJournal of machine learning research (JMLR), 2016
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
168
23
0
08 Jul 2016
The block-Poisson estimator for optimally tuned exact subsampling MCMC
The block-Poisson estimator for optimally tuned exact subsampling MCMC
M. Quiroz
Minh-Ngoc Tran
M. Villani
Robert Kohn
Khue-Dung Dang
328
27
0
27 Mar 2016
Speeding Up MCMC by Efficient Data Subsampling
Speeding Up MCMC by Efficient Data SubsamplingJournal of the American Statistical Association (JASA), 2014
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
335
179
0
16 Apr 2014
1