ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.01785
  4. Cited By
Interpreting CNN Knowledge via an Explanatory Graph

Interpreting CNN Knowledge via an Explanatory Graph

5 August 2017
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
    FAtt
    GNN
    SSL
ArXivPDFHTML

Papers citing "Interpreting CNN Knowledge via an Explanatory Graph"

26 / 26 papers shown
Title
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
GIFT: A Framework for Global Interpretable Faithful Textual Explanations of Vision Classifiers
Éloi Zablocki
Valentin Gerard
Amaia Cardiel
Eric Gaussier
Matthieu Cord
Eduardo Valle
79
0
0
23 Nov 2024
P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models
P-TA: Using Proximal Policy Optimization to Enhance Tabular Data Augmentation via Large Language Models
Shuo Yang
Chenchen Yuan
Yao Rong
Felix Steinbauer
Gjergji Kasneci
36
1
0
17 Jun 2024
Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
Shahin Atakishiyev
Mohammad Salameh
Randy Goebel
66
6
0
18 Mar 2024
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Mixture of Gaussian-distributed Prototypes with Generative Modelling for Interpretable and Trustworthy Image Recognition
Chong Wang
Yuanhong Chen
Fengbei Liu
Yuyuan Liu
Davis J. McCarthy
Helen Frazer
Gustavo Carneiro
18
1
0
30 Nov 2023
Using Logic Programming and Kernel-Grouping for Improving
  Interpretability of Convolutional Neural Networks
Using Logic Programming and Kernel-Grouping for Improving Interpretability of Convolutional Neural Networks
Parth Padalkar
Gopal Gupta
19
3
0
19 Oct 2023
Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
  on AI-based Recruitment
Human-Centric Multimodal Machine Learning: Recent Advances and Testbed on AI-based Recruitment
Alejandro Peña
Ignacio Serna
Aythami Morales
Julian Fierrez
Alfonso Ortega
Ainhoa Herrarte
Manuel Alcántara
J. Ortega-Garcia
FaML
23
34
0
13 Feb 2023
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
28
3
0
28 Nov 2022
VL-InterpreT: An Interactive Visualization Tool for Interpreting
  Vision-Language Transformers
VL-InterpreT: An Interactive Visualization Tool for Interpreting Vision-Language Transformers
Estelle Aflalo
Meng Du
Shao-Yen Tseng
Yongfei Liu
Chenfei Wu
Nan Duan
Vasudev Lal
23
45
0
30 Mar 2022
Attributable Visual Similarity Learning
Attributable Visual Similarity Learning
Borui Zhang
Wenzhao Zheng
Jie Zhou
Jiwen Lu
16
17
0
28 Mar 2022
Concept Embedding Analysis: A Review
Concept Embedding Analysis: A Review
Gesina Schwalbe
19
28
0
25 Mar 2022
TSGB: Target-Selective Gradient Backprop for Probing CNN Visual Saliency
TSGB: Target-Selective Gradient Backprop for Probing CNN Visual Saliency
Lin Cheng
Pengfei Fang
Yanjie Liang
Liao Zhang
Chunhua Shen
Hanzi Wang
FAtt
17
11
0
11 Oct 2021
IFBiD: Inference-Free Bias Detection
IFBiD: Inference-Free Bias Detection
Ignacio Serna
Daniel DeAlcala
Aythami Morales
Julian Fierrez
J. Ortega-Garcia
CVBM
31
11
0
09 Sep 2021
A Computer-Aided Diagnosis System for Breast Pathology: A Deep Learning
  Approach with Model Interpretability from Pathological Perspective
A Computer-Aided Diagnosis System for Breast Pathology: A Deep Learning Approach with Model Interpretability from Pathological Perspective
Wei‐Wen Hsu
Yongfang Wu
Chang Hao
Yu-Ling Hou
Xiang Gao
Y. Shao
Xueli Zhang
Tao He
Yanhong Tai
OOD
12
3
0
05 Aug 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A
  Systematic Survey of Surveys on Methods and Concepts
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
21
184
0
15 May 2021
Explainability of deep vision-based autonomous driving systems: Review
  and challenges
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
37
169
0
13 Jan 2021
Learning Propagation Rules for Attribution Map Generation
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
FAtt
30
17
0
14 Oct 2020
Training Interpretable Convolutional Neural Networks by Differentiating
  Class-specific Filters
Training Interpretable Convolutional Neural Networks by Differentiating Class-specific Filters
Haoyun Liang
Zhihao Ouyang
Yuyuan Zeng
Hang Su
Zihao He
Shutao Xia
Jun Zhu
Bo Zhang
16
47
0
16 Jul 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
29
371
0
30 Apr 2020
An Investigation of Interpretability Techniques for Deep Learning in
  Predictive Process Analytics
An Investigation of Interpretability Techniques for Deep Learning in Predictive Process Analytics
Catarina Moreira
Renuka Sindhgatta
Chun Ouyang
P. Bruza
Andreas Wichert
12
4
0
21 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
32
300
0
08 Jan 2020
Evaluating Explanation Without Ground Truth in Interpretable Machine
  Learning
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
21
66
0
16 Jul 2019
Interpretable machine learning: definitions, methods, and applications
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
21
1,416
0
14 Jan 2019
Explaining Neural Networks Semantically and Quantitatively
Explaining Neural Networks Semantically and Quantitatively
Runjin Chen
Hao Chen
Ge Huang
J. Ren
Quanshi Zhang
FAtt
14
54
0
18 Dec 2018
Hierarchical interpretations for neural network predictions
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
20
145
0
14 Jun 2018
Visual Interpretability for Deep Learning: a Survey
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
17
809
0
02 Feb 2018
ReNN: Rule-embedded Neural Networks
ReNN: Rule-embedded Neural Networks
Hu Wang
AI4TS
13
15
0
30 Jan 2018
1