ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.02183
  4. Cited By
Multiresolution Kernel Approximation for Gaussian Process Regression
v1v2v3 (latest)

Multiresolution Kernel Approximation for Gaussian Process Regression

7 August 2017
Yi Ding
Risi Kondor
Jonathan Eskreis-Winkler
ArXiv (abs)PDFHTML

Papers citing "Multiresolution Kernel Approximation for Gaussian Process Regression"

8 / 8 papers shown
Title
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Marie Viset
Rudy Helmons
Manon Kok
96
1
0
17 Oct 2022
NURD: Negative-Unlabeled Learning for Online Datacenter Straggler
  Prediction
NURD: Negative-Unlabeled Learning for Online Datacenter Straggler Prediction
Yi Ding
Avinash Rao
Hyebin Song
Rebecca Willett
Henry Hoffmann
95
3
0
16 Mar 2022
Construction and Monte Carlo estimation of wavelet frames generated by a
  reproducing kernel
Construction and Monte Carlo estimation of wavelet frames generated by a reproducing kernel
Ernesto De Vito
Ž. Kereta
Valeriya Naumova
Lorenzo Rosasco
Stefano Vigogna
72
3
0
17 Jun 2020
Multiresolution Tensor Learning for Efficient and Interpretable Spatial
  Analysis
Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis
Jung Yeon Park
K. T. Carr
Stephan Zhang
Yisong Yue
Rose Yu
109
14
0
13 Feb 2020
Spatial Analysis Made Easy with Linear Regression and Kernels
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
55
20
0
22 Feb 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
100
10
0
18 Dec 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
144
697
0
03 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
89
15
0
26 Jun 2018
1