ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.03625
  4. Cited By
Unbiased Markov chain Monte Carlo with couplings
v1v2v3v4v5 (latest)

Unbiased Markov chain Monte Carlo with couplings

11 August 2017
Pierre E. Jacob
J. O'Leary
Yves F. Atchadé
ArXiv (abs)PDFHTML

Papers citing "Unbiased Markov chain Monte Carlo with couplings"

48 / 48 papers shown
Title
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression
Mixing times of data-augmentation Gibbs samplers for high-dimensional probit regression
Filippo Ascolani
Giacomo Zanella
119
0
0
20 May 2025
Feynman-Kac Operator Expectation Estimator
Feynman-Kac Operator Expectation Estimator
Jingyuan Li
Wei Liu
81
0
0
02 Jul 2024
Single-seed generation of Brownian paths and integrals for adaptive and
  high order SDE solvers
Single-seed generation of Brownian paths and integrals for adaptive and high order SDE solvers
Andravz Jelinvcivc
James Foster
Patrick Kidger
73
2
0
10 May 2024
Softened Symbol Grounding for Neuro-symbolic Systems
Softened Symbol Grounding for Neuro-symbolic Systems
Zenan Li
Yuan Yao
Taolue Chen
Jingwei Xu
Chun Cao
Xiaoxing Ma
Jian Lu
NAI
65
14
0
01 Mar 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
84
0
0
30 Jan 2024
Perfecting MCMC Sampling: Recipes and Reservations
Perfecting MCMC Sampling: Recipes and Reservations
Radu V. Craiu
Xiao-Li Meng
11
0
0
04 Jan 2024
Channelling Multimodality Through a Unimodalizing Transport: Warp-U
  Sampler and Stochastic Bridge Sampling
Channelling Multimodality Through a Unimodalizing Transport: Warp-U Sampler and Stochastic Bridge Sampling
Fei Ding
David E. Jones
Shiyuan He
Xiao-Li Meng
OT
41
0
0
01 Jan 2024
Unbiased Estimation using Underdamped Langevin Dynamics
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
70
6
0
14 Jun 2022
Unbiased Estimation using a Class of Diffusion Processes
Unbiased Estimation using a Class of Diffusion Processes
Hamza Ruzayqat
A. Beskos
Dan Crisan
Ajay Jasra
N. Kantas
45
9
0
06 Mar 2022
Pseudo-Spherical Contrastive Divergence
Pseudo-Spherical Contrastive Divergence
Lantao Yu
Jiaming Song
Yang Song
Stefano Ermon
56
7
0
01 Nov 2021
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte
  Carlo
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte Carlo
W. Mongwe
R. Mbuvha
T. Marwala
48
6
0
05 Jul 2021
Monte Carlo Filtering Objectives: A New Family of Variational Objectives
  to Learn Generative Model and Neural Adaptive Proposal for Time Series
Monte Carlo Filtering Objectives: A New Family of Variational Objectives to Learn Generative Model and Neural Adaptive Proposal for Time Series
Shuangshuang Chen
Sihao Ding
Y. Karayiannidis
Mårten Björkman
BDLAI4TS
42
2
0
20 May 2021
Approximating the Spectral Gap of the Pólya-Gamma Gibbs Sampler
Approximating the Spectral Gap of the Pólya-Gamma Gibbs Sampler
Bryant Davis
J. Hobert
22
0
0
27 Apr 2021
Post-Processing of MCMC
Post-Processing of MCMC
Leah F. South
M. Riabiz
Onur Teymur
Chris J. Oates
95
18
0
30 Mar 2021
On Unbiased Estimation for Discretized Models
On Unbiased Estimation for Discretized Models
J. Heng
Ajay Jasra
K. Law
Alexander Tarakanov
49
21
0
24 Feb 2021
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
102
265
0
09 Jan 2021
Coupling-based convergence assessment of some Gibbs samplers for
  high-dimensional Bayesian regression with shrinkage priors
Coupling-based convergence assessment of some Gibbs samplers for high-dimensional Bayesian regression with shrinkage priors
N. Biswas
A. Bhattacharya
Pierre E. Jacob
J. Johndrow
55
14
0
09 Dec 2020
Minimax Quasi-Bayesian estimation in sparse canonical correlation
  analysis via a Rayleigh quotient function
Minimax Quasi-Bayesian estimation in sparse canonical correlation analysis via a Rayleigh quotient function
Qiuyun Zhu
Yves Atchadé
13
1
0
16 Oct 2020
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled
  Markov Chains
Unbiased Gradient Estimation for Variational Auto-Encoders using Coupled Markov Chains
Francisco J. R. Ruiz
Michalis K. Titsias
taylan. cemgil
Arnaud Doucet
BDLDRL
65
14
0
05 Oct 2020
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via
  Control Variates
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates
Radu V. Craiu
Xiangxu Meng
83
9
0
28 Aug 2020
Parallelizing MCMC Sampling via Space Partitioning
Parallelizing MCMC Sampling via Space Partitioning
V. Hafych
P. Eller
O. Schulz
Allen Caldwel
75
4
0
07 Aug 2020
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
132
68
0
23 Jul 2020
SUMO: Unbiased Estimation of Log Marginal Probability for Latent
  Variable Models
SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo
Alex Beatson
Mohammad Norouzi
Jun Zhu
David Duvenaud
Ryan P. Adams
Ricky T. Q. Chen
131
29
0
01 Apr 2020
Semi-Modular Inference: enhanced learning in multi-modular models by
  tempering the influence of components
Semi-Modular Inference: enhanced learning in multi-modular models by tempering the influence of components
Chris U. Carmona
Geoff K. Nicholls
122
27
0
15 Mar 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based
  Models without Sampling
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
R. Zemel
67
14
0
13 Feb 2020
Hamiltonian Monte Carlo Swindles
Hamiltonian Monte Carlo Swindles
Dan Piponi
Matthew D. Hoffman
Pavel Sountsov
47
9
0
14 Jan 2020
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov
  Processes
Accelerated Sampling on Discrete Spaces with Non-Reversible Markov Processes
Samuel Power
Jacob Vorstrup Goldman
83
31
0
10 Dec 2019
A continuation method in Bayesian inference
A continuation method in Bayesian inference
B. M. Dia
38
4
0
26 Nov 2019
A Gibbs sampler for a class of random convex polytopes
A Gibbs sampler for a class of random convex polytopes
Pierre E. Jacob
Ruobin Gong
P. Edlefsen
A. Dempster
51
14
0
25 Oct 2019
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
55
5
0
10 Oct 2019
Convergence diagnostics for Markov chain Monte Carlo
Convergence diagnostics for Markov chain Monte Carlo
Vivekananda Roy
80
220
0
26 Sep 2019
Analyzing MCMC Output
Analyzing MCMC Output
Dootika Vats
Nathan Robertson
James M. Flegal
Galin L. Jones
49
1
0
26 Jul 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
49
32
0
04 Jun 2019
Conditionally Gaussian Random Sequences for an Integrated Variance
  Estimator with Correlation between Noise and Returns
Conditionally Gaussian Random Sequences for an Integrated Variance Estimator with Correlation between Noise and Returns
S. Peluso
Antonietta Mira
P. Muliere
27
1
0
28 May 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
58
49
0
23 May 2019
Efficient Optimization of Loops and Limits with Randomized Telescoping
  Sums
Efficient Optimization of Loops and Limits with Randomized Telescoping Sums
Alex Beatson
Ryan P. Adams
72
21
0
16 May 2019
Particle filter efficiency under limited communication
Particle filter efficiency under limited communication
Deborshee Sen
33
2
0
21 Apr 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
85
949
0
19 Mar 2019
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
75
22
0
05 Feb 2019
Central Limit Theorems for Coupled Particle Filters
Central Limit Theorems for Coupled Particle Filters
Ajay Jasra
Fangyuan Yu
59
18
0
11 Oct 2018
Unbiased estimation of log normalizing constants with applications to
  Bayesian cross-validation
Unbiased estimation of log normalizing constants with applications to Bayesian cross-validation
M. Rischard
Pierre E. Jacob
Natesh Pillai
70
22
0
02 Oct 2018
Unbiased Markov chain Monte Carlo for intractable target distributions
Unbiased Markov chain Monte Carlo for intractable target distributions
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
72
33
0
23 Jul 2018
Coupled conditional backward sampling particle filter
Coupled conditional backward sampling particle filter
Anthony Lee
Sumeetpal S. Singh
M. Vihola
102
33
0
15 Jun 2018
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
107
141
0
08 Apr 2018
Unbiased Hamiltonian Monte Carlo with couplings
Unbiased Hamiltonian Monte Carlo with couplings
J. Heng
Pierre E. Jacob
93
64
0
01 Sep 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a
  Scalable MCMC Algorithm for the Horseshoe Prior
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
79
24
0
02 May 2017
Smoothing with Couplings of Conditional Particle Filters
Smoothing with Couplings of Conditional Particle Filters
Pierre E. Jacob
Fredrik Lindsten
Thomas B. Schon
138
55
0
08 Jan 2017
Importance sampling type estimators based on approximate marginal MCMC
Importance sampling type estimators based on approximate marginal MCMC
M. Vihola
Jouni Helske
Jordan Franks
93
25
0
08 Sep 2016
1