ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.04465
  4. Cited By
Actively Learning what makes a Discrete Sequence Valid

Actively Learning what makes a Discrete Sequence Valid

15 August 2017
David Janz
J. Westhuizen
José Miguel Hernández-Lobato
ArXiv (abs)PDFHTML

Papers citing "Actively Learning what makes a Discrete Sequence Valid"

10 / 10 papers shown
Title
Interpretable Molecular Graph Generation via Monotonic Constraints
Interpretable Molecular Graph Generation via Monotonic ConstraintsSDM (SDM), 2022
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
138
23
0
28 Feb 2022
Scalable Batch-Mode Deep Bayesian Active Learning via Equivalence Class
  Annealing
Scalable Batch-Mode Deep Bayesian Active Learning via Equivalence Class AnnealingInternational Conference on Learning Representations (ICLR), 2021
Renyu Zhang
Aly A. Khan
Robert L. Grossman
Yuxin Chen
BDL
151
4
0
27 Dec 2021
Improving black-box optimization in VAE latent space using decoder
  uncertainty
Improving black-box optimization in VAE latent space using decoder uncertaintyNeural Information Processing Systems (NeurIPS), 2021
Pascal Notin
José Miguel Hernández-Lobato
Y. Gal
218
69
0
30 Jun 2021
A Survey of Deep Active Learning
A Survey of Deep Active LearningACM Computing Surveys (ACM CSUR), 2020
Pengzhen Ren
Yun Xiao
Xiaojun Chang
Po-Yao (Bernie) Huang
Zhihui Li
Brij B. Gupta
Xiaojiang Chen
Xin Wang
284
1,291
0
30 Aug 2020
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian
  Active Learning
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active LearningNeural Information Processing Systems (NeurIPS), 2019
Andreas Kirsch
Joost R. van Amersfoort
Y. Gal
FedML
298
688
0
19 Jun 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE3DV
187
334
0
11 Mar 2019
Syntax-Directed Variational Autoencoder for Structured Data
Syntax-Directed Variational Autoencoder for Structured Data
H. Dai
Yingtao Tian
Bo Dai
Steven Skiena
Le Song
205
342
0
24 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
802
1,502
0
12 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
317
77
0
16 Sep 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of moleculesACS Central Science (ACS Cent. Sci.), 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
506
3,158
0
07 Oct 2016
1