ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.05125
  4. Cited By
Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark
  Performances and Survey
v1v2 (latest)

Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey

17 August 2017
Feiyun Zhu
ArXiv (abs)PDFHTML

Papers citing "Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey"

13 / 13 papers shown
Title
Block Majorization Minimization with Extrapolation and Application to $β$-NMF
Block Majorization Minimization with Extrapolation and Application to βββ-NMF
L. Hien
Valentin Leplat
Nicolas Gillis
80
3
0
12 Jan 2024
A Second-Order Majorant Algorithm for Nonnegative Matrix Factorization
A Second-Order Majorant Algorithm for Nonnegative Matrix Factorization
M. Pham
Jérémy E. Cohen
T. Chonavel
46
2
0
31 Mar 2023
Entropic Descent Archetypal Analysis for Blind Hyperspectral Unmixing
Entropic Descent Archetypal Analysis for Blind Hyperspectral Unmixing
Alexandre Zouaoui
Gedeon Muhawenayo
Behnood Rasti
Jocelyn Chanussot
Julien Mairal
69
17
0
22 Sep 2022
Hyperspectral Pixel Unmixing with Latent Dirichlet Variational
  Autoencoder
Hyperspectral Pixel Unmixing with Latent Dirichlet Variational Autoencoder
Kiran Mantripragada
Faisal Z. Qureshi
84
35
0
02 Mar 2022
Deep Deterministic Independent Component Analysis for Hyperspectral
  Unmixing
Deep Deterministic Independent Component Analysis for Hyperspectral Unmixing
Hongming Li
Shujian Yu
José C. Príncipe
49
6
0
07 Feb 2022
Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding
  problem
Dictionary-based Low-Rank Approximations and the Mixed Sparse Coding problem
Jérémy E. Cohen
45
0
0
24 Nov 2021
Smoothed Separable Nonnegative Matrix Factorization
Smoothed Separable Nonnegative Matrix Factorization
Nicolas Nadisic
Nicolas Gillis
Christophe Kervazo
62
9
0
11 Oct 2021
Improving Autoencoder Training Performance for Hyperspectral Unmixing
  with Network Reinitialisation
Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation
Kamil Książek
P. Głomb
M. Romaszewski
M. Cholewa
B. Grabowski
Krisztián Búza
58
3
0
28 Sep 2021
Using Low-rank Representation of Abundance Maps and Nonnegative Tensor
  Factorization for Hyperspectral Nonlinear Unmixing
Using Low-rank Representation of Abundance Maps and Nonnegative Tensor Factorization for Hyperspectral Nonlinear Unmixing
Lianru Gao
Zhicheng Wang
Lina Zhuang
Haoyang Yu
Bing Zhang
Jocelyn Chanussot
38
76
0
30 Mar 2021
SCA-Net: A Self-Correcting Two-Layer Autoencoder for Hyper-spectral
  Unmixing
SCA-Net: A Self-Correcting Two-Layer Autoencoder for Hyper-spectral Unmixing
Gurpreet Singh
Soumyajit Gupta
Clint Dawson
32
2
0
10 Feb 2021
Matrix-wise $\ell_0$-constrained Sparse Nonnegative Least Squares
Matrix-wise ℓ0\ell_0ℓ0​-constrained Sparse Nonnegative Least Squares
Nicolas Nadisic
Jérémy E. Cohen
A. Vandaele
Nicolas Gillis
40
0
0
22 Nov 2020
Deep matrix factorizations
Deep matrix factorizations
Pierre De Handschutter
Nicolas Gillis
Xavier Siebert
BDL
128
47
0
01 Oct 2020
Near-Convex Archetypal Analysis
Near-Convex Archetypal Analysis
Pierre De Handschutter
Nicolas Gillis
A. Vandaele
Xavier Siebert
33
8
0
02 Oct 2019
1