ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1708.07164
  4. Cited By
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian
  Information

Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information

23 August 2017
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
ArXivPDFHTML

Papers citing "Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information"

31 / 31 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
31
0
0
28 Jan 2025
Cubic regularized subspace Newton for non-convex optimization
Cubic regularized subspace Newton for non-convex optimization
Jim Zhao
Aurélien Lucchi
N. Doikov
20
5
0
24 Jun 2024
On Newton's Method to Unlearn Neural Networks
On Newton's Method to Unlearn Neural Networks
Nhung Bui
Xinyang Lu
Rachael Hwee Ling Sim
See-Kiong Ng
Bryan Kian Hsiang Low
MU
39
2
0
20 Jun 2024
Level Set Teleportation: An Optimization Perspective
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
33
1
0
05 Mar 2024
Second-Order Fine-Tuning without Pain for LLMs:A Hessian Informed Zeroth-Order Optimizer
Second-Order Fine-Tuning without Pain for LLMs:A Hessian Informed Zeroth-Order Optimizer
Yanjun Zhao
Sizhe Dang
Haishan Ye
Guang Dai
Yi Qian
Ivor W.Tsang
66
8
0
23 Feb 2024
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic
  Newton Methods
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic Newton Methods
El Mahdi Chayti
N. Doikov
Martin Jaggi
ODL
24
5
0
23 Feb 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic
  Regularization
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
19
1
0
22 Feb 2023
Explicit Second-Order Min-Max Optimization Methods with Optimal
  Convergence Guarantee
Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
24
11
0
23 Oct 2022
Augmented Newton Method for Optimization: Global Linear Rate and
  Momentum Interpretation
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
14
1
0
23 May 2022
Efficient Convex Optimization Requires Superlinear Memory
Efficient Convex Optimization Requires Superlinear Memory
A. Marsden
Vatsal Sharan
Aaron Sidford
Gregory Valiant
24
14
0
29 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
20
8
0
18 Feb 2022
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
  Optimization
Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic Optimization
Raghu Bollapragada
Stefan M. Wild
27
11
0
24 Sep 2021
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton
  Update
Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update
Michal Derezinski
Jonathan Lacotte
Mert Pilanci
Michael W. Mahoney
32
26
0
15 Jul 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
24
0
0
26 Aug 2020
Precise expressions for random projections: Low-rank approximation and
  randomized Newton
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
19
23
0
18 Jun 2020
A block coordinate descent optimizer for classification problems
  exploiting convexity
A block coordinate descent optimizer for classification problems exploiting convexity
Ravi G. Patel
N. Trask
Mamikon A. Gulian
E. Cyr
ODL
22
7
0
17 Jun 2020
Adaptive Stochastic Optimization
Adaptive Stochastic Optimization
Frank E. Curtis
K. Scheinberg
ODL
6
29
0
18 Jan 2020
Global Convergence of Policy Gradient Methods to (Almost) Locally
  Optimal Policies
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
K. Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
28
186
0
19 Jun 2019
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
Quasi-Newton Methods for Machine Learning: Forget the Past, Just Sample
A. Berahas
Majid Jahani
Peter Richtárik
Martin Takávc
8
40
0
28 Jan 2019
A note on solving nonlinear optimization problems in variable precision
A note on solving nonlinear optimization problems in variable precision
Serge Gratton
P. Toint
17
13
0
09 Dec 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL
  Property
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
24
23
0
22 Aug 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Local Saddle Point Optimization: A Curvature Exploitation Approach
Local Saddle Point Optimization: A Curvature Exploitation Approach
Leonard Adolphs
Hadi Daneshmand
Aurélien Lucchi
Thomas Hofmann
17
107
0
15 May 2018
Escaping Saddles with Stochastic Gradients
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurélien Lucchi
Thomas Hofmann
19
161
0
15 Mar 2018
GPU Accelerated Sub-Sampled Newton's Method
GPU Accelerated Sub-Sampled Newton's Method
Sudhir B. Kylasa
Farbod Roosta-Khorasani
Michael W. Mahoney
A. Grama
ODL
18
8
0
26 Feb 2018
Stochastic Variance-Reduced Cubic Regularization for Nonconvex
  Optimization
Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
Zhe Wang
Yi Zhou
Yingbin Liang
Guanghui Lan
29
46
0
20 Feb 2018
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature
  for Non-Convex Optimization
NEON+: Accelerated Gradient Methods for Extracting Negative Curvature for Non-Convex Optimization
Yi Tian Xu
R. L. Jin
Tianbao Yang
16
25
0
04 Dec 2017
On Noisy Negative Curvature Descent: Competing with Gradient Descent for
  Faster Non-convex Optimization
On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization
Mingrui Liu
Tianbao Yang
28
23
0
25 Sep 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
18
127
0
11 Sep 2017
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1