Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.08694
Cited By
Natasha 2: Faster Non-Convex Optimization Than SGD
29 August 2017
Zeyuan Allen-Zhu
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Natasha 2: Faster Non-Convex Optimization Than SGD"
49 / 49 papers shown
Title
SAPPHIRE: Preconditioned Stochastic Variance Reduction for Faster Large-Scale Statistical Learning
Jingruo Sun
Zachary Frangella
Madeleine Udell
31
0
0
28 Jan 2025
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
35
4
0
16 May 2024
Private Federated Learning with Dynamic Power Control via Non-Coherent Over-the-Air Computation
Anbang Zhang
Shuaishuai Guo
Shuai Liu
19
2
0
05 Aug 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
29
6
0
25 May 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Adaptive scaling of the learning rate by second order automatic differentiation
F. Gournay
Alban Gossard
ODL
23
1
0
26 Oct 2022
Optimization for Amortized Inverse Problems
Tianci Liu
Tong Yang
Quan Zhang
Qi Lei
28
4
0
25 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
22
7
0
04 Oct 2022
Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks
Zhibin Wang
Yong Zhou
Yuanming Shi
W. Zhuang
25
67
0
06 Jun 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
18
8
0
18 Feb 2022
Coordinate Descent Methods for Fractional Minimization
Ganzhao Yuan
13
6
0
30 Jan 2022
Escape saddle points by a simple gradient-descent based algorithm
Chenyi Zhang
Tongyang Li
ODL
23
15
0
28 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
A Stochastic Newton Algorithm for Distributed Convex Optimization
Brian Bullins
Kumar Kshitij Patel
Ohad Shamir
Nathan Srebro
Blake E. Woodworth
26
15
0
07 Oct 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
20
13
0
19 Jul 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
17
25
0
25 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
23
50
0
04 May 2021
Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and Power Transfer
Qunsong Zeng
Yuqing Du
Kaibin Huang
24
35
0
24 Feb 2021
PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization
Zhize Li
Hongyan Bao
Xiangliang Zhang
Peter Richtárik
ODL
24
125
0
25 Aug 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
77
53
0
24 Jun 2020
Evading Curse of Dimensionality in Unconstrained Private GLMs via Private Gradient Descent
Shuang Song
Thomas Steinke
Om Thakkar
Abhradeep Thakurta
27
50
0
11 Jun 2020
Statistical Learning with Conditional Value at Risk
Tasuku Soma
Yuichi Yoshida
6
38
0
14 Feb 2020
On the distance between two neural networks and the stability of learning
Jeremy Bernstein
Arash Vahdat
Yisong Yue
Ming-Yu Liu
ODL
195
57
0
09 Feb 2020
One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis
Guangxu Zhu
Yuqing Du
Deniz Gunduz
Kaibin Huang
31
308
0
16 Jan 2020
Energy Efficient Federated Learning Over Wireless Communication Networks
Zhaohui Yang
Mingzhe Chen
Walid Saad
C. Hong
M. Shikh-Bahaei
13
680
0
06 Nov 2019
Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
Seonho Park
Seung Hyun Jung
P. Pardalos
ODL
16
15
0
27 Jun 2019
Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization
Rong Ge
Zhize Li
Weiyao Wang
Xiang Wang
17
33
0
01 May 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
R-SPIDER: A Fast Riemannian Stochastic Optimization Algorithm with Curvature Independent Rate
J. Zhang
Hongyi Zhang
S. Sra
16
39
0
10 Nov 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark W. Schmidt
28
296
0
16 Oct 2018
signSGD with Majority Vote is Communication Efficient And Fault Tolerant
Jeremy Bernstein
Jiawei Zhao
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
9
46
0
11 Oct 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
21
23
0
22 Aug 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
33
568
0
04 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
K. Ramchandran
Peter L. Bartlett
FedML
24
97
0
14 Jun 2018
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes
Rachel A. Ward
Xiaoxia Wu
Léon Bottou
ODL
19
358
0
05 Jun 2018
Stochastic Zeroth-order Optimization via Variance Reduction method
L. Liu
Minhao Cheng
Cho-Jui Hsieh
Dacheng Tao
19
19
0
30 May 2018
Local Saddle Point Optimization: A Curvature Exploitation Approach
Leonard Adolphs
Hadi Daneshmand
Aurélien Lucchi
Thomas Hofmann
15
107
0
15 May 2018
Stochastic model-based minimization of weakly convex functions
Damek Davis
D. Drusvyatskiy
17
370
0
17 Mar 2018
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurélien Lucchi
Thomas Hofmann
19
161
0
15 Mar 2018
A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
Zhize Li
Jian Li
33
116
0
13 Feb 2018
signSGD: Compressed Optimisation for Non-Convex Problems
Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Anima Anandkumar
FedML
ODL
30
1,018
0
13 Feb 2018
Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization
Zeyuan Allen-Zhu
ODL
42
52
0
12 Feb 2018
Neon2: Finding Local Minima via First-Order Oracles
Zeyuan Allen-Zhu
Yuanzhi Li
21
130
0
17 Nov 2017
On Noisy Negative Curvature Descent: Competing with Gradient Descent for Faster Non-convex Optimization
Mingrui Liu
Tianbao Yang
28
23
0
25 Sep 2017
Natasha: Faster Non-Convex Stochastic Optimization Via Strongly Non-Convex Parameter
Zeyuan Allen-Zhu
15
80
0
02 Feb 2017
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
575
0
18 Mar 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
1