Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1708.09832
Cited By
v1
v2
v3 (latest)
Model based learning for accelerated, limited-view 3D photoacoustic tomography
31 August 2017
A. Hauptmann
F. Lucka
M. Betcke
N. Huynh
J. Adler
B. Cox
P. Beard
Sebastien Ourselin
Simon Arridge
MedIm
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Model based learning for accelerated, limited-view 3D photoacoustic tomography"
11 / 61 papers shown
Title
Regularization by architecture: A deep prior approach for inverse problems
Sören Dittmer
T. Kluth
Peter Maass
Daniel Otero Baguer
95
98
0
10 Dec 2018
Beltrami-Net: Domain Independent Deep D-bar Learning for Absolute Imaging with Electrical Impedance Tomography (a-EIT)
S. Hamilton
A. Hänninen
A. Hauptmann
V. Kolehmainen
67
64
0
30 Nov 2018
Networks for Nonlinear Diffusion Problems in Imaging
Simon Arridge
A. Hauptmann
DiffM
MedIm
70
18
0
29 Nov 2018
Learning The Invisible: A Hybrid Deep Learning-Shearlet Framework for Limited Angle Computed Tomography
T. Bubba
Gitta Kutyniok
Matti Lassas
M. März
Wojciech Samek
S. Siltanen
Vignesh Srinivasan
164
136
0
12 Nov 2018
Computationally Efficient Deep Neural Network for Computed Tomography Image Reconstruction
Dufan Wu
Kyungsang Kim
Quanzheng Li
43
43
0
05 Oct 2018
A Deep Learning Framework for Single-Sided Sound Speed Inversion in Medical Ultrasound
Micha Feigin-Almon
Daniel Freedman
B. Anthony
SyDa
MedIm
150
86
0
30 Sep 2018
Fully Dense UNet for 2D Sparse Photoacoustic Tomography Artifact Removal
Steven Guan
Amir A. Khan
S. Sikdar
P. Chitnis
74
416
0
31 Aug 2018
Task adapted reconstruction for inverse problems
J. Adler
Sebastian Lunz
Olivier Verdier
Carola-Bibiane Schönlieb
Ozan Oktem
75
43
0
27 Aug 2018
Approximate k-space models and Deep Learning for fast photoacoustic reconstruction
A. Hauptmann
B. Cox
F. Lucka
N. Huynh
M. Betcke
P. Beard
Simon Arridge
44
42
0
09 Jul 2018
Deep D-bar: Real time Electrical Impedance Tomography Imaging with Deep Neural Networks
S. Hamilton
A. Hauptmann
91
256
0
08 Nov 2017
Context encoding enables machine learning-based quantitative photoacoustics
Thomas Kirchner
J. Gröhl
Lena Maier-Hein
40
62
0
12 Jun 2017
Previous
1
2