Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.00291
Cited By
Asymptotic Bias of Stochastic Gradient Search
30 August 2017
V. Tadic
Arnaud Doucet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Asymptotic Bias of Stochastic Gradient Search"
42 / 42 papers shown
Title
Derivatives of Stochastic Gradient Descent
F. Iutzeler
Edouard Pauwels
Samuel Vaiter
75
1
0
24 May 2024
Inexact subgradient methods for semialgebraic functions
Jérôme Bolte
Tam Le
Éric Moulines
Edouard Pauwels
110
2
0
30 Apr 2024
Stochastic Approximation with Biased MCMC for Expectation Maximization
Samuel Gruffaz
Kyurae Kim
Alain Durmus
Jacob R. Gardner
77
6
0
27 Feb 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
154
15
0
08 Feb 2024
Non-asymptotic Analysis of Biased Adaptive Stochastic Approximation
Sobihan Surendran
Antoine Godichon-Baggioni
Adeline Fermanian
Sylvain Le Corff
109
2
0
05 Feb 2024
Plug-and-Play image restoration with Stochastic deNOising REgularization
Marien Renaud
Jean Prost
Arthur Leclaire
Nicolas Papadakis
DiffM
166
8
0
01 Feb 2024
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
Rajeeva Laxman Karandikar
M. Vidyasagar
79
10
0
05 Dec 2023
Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
Céline Comte
Matthieu Jonckheere
J. Sanders
Albert Senen-Cerda
51
1
0
05 Dec 2023
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning
Hadrien Hendrikx
G. Fort
Eric Moulines
Hoi-To Wai
81
12
0
22 Feb 2023
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
86
3
0
09 Nov 2022
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang
Yunwen Lei
Yiming Ying
Ding-Xuan Zhou
78
18
0
16 Sep 2022
A repeated unknown game: Decentralized task offloading in vehicular fog computing
Byungjin Cho
Yu Xiao
37
1
0
03 Sep 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
67
9
0
13 Jul 2022
Constrained Stochastic Nonconvex Optimization with State-dependent Markov Data
Abhishek Roy
Krishnakumar Balasubramanian
Saeed Ghadimi
85
9
0
22 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
95
8
0
13 Jun 2022
Unbiased Multilevel Monte Carlo methods for intractable distributions: MLMC meets MCMC
Guanyang Wang
T. Wang
91
15
0
11 Apr 2022
Convergence of First-Order Methods for Constrained Nonconvex Optimization with Dependent Data
Ahmet Alacaoglu
Hanbaek Lyu
64
4
0
29 Mar 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
71
26
0
16 Jan 2022
Conditionally Gaussian PAC-Bayes
Eugenio Clerico
George Deligiannidis
Arnaud Doucet
110
10
0
22 Oct 2021
Convergence of Batch Asynchronous Stochastic Approximation With Applications to Reinforcement Learning
Rajeeva Laxman Karandikar
M. Vidyasagar
99
0
0
08 Sep 2021
Stochastic Approximation with Discontinuous Dynamics, Differential Inclusions, and Applications
N. Nguyen
G. Yin
68
7
0
28 Aug 2021
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo
Ziang Niu
J. Meier
F. Briol
106
13
0
22 Jun 2021
On Unbiased Score Estimation for Partially Observed Diffusions
J. Heng
J. Houssineau
Ajay Jasra
70
11
0
11 May 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
96
112
0
08 Mar 2021
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part II: Theoretical Analysis
Valentin De Bortoli
Alain Durmus
A. F. Vidal
Marcelo Pereyra
88
20
0
13 Aug 2020
Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms
Tengyu Xu
Zhe Wang
Yingbin Liang
87
25
0
27 Apr 2020
Convergence rates and approximation results for SGD and its continuous-time counterpart
Xavier Fontaine
Valentin De Bortoli
Alain Durmus
44
7
0
08 Apr 2020
Policy-Aware Model Learning for Policy Gradient Methods
Romina Abachi
Mohammad Ghavamzadeh
Amir-massoud Farahmand
77
36
0
28 Feb 2020
Non-asymptotic Convergence of Adam-type Reinforcement Learning Algorithms under Markovian Sampling
Huaqing Xiong
Tengyu Xu
Yingbin Liang
Wei Zhang
79
33
0
15 Feb 2020
A Stochastic Gradient Method with Biased Estimation for Faster Nonconvex Optimization
Jia Bi
S. Gunn
61
3
0
13 May 2019
AutoAssist: A Framework to Accelerate Training of Deep Neural Networks
Jiong Zhang
Hsiang-Fu Yu
Inderjit S. Dhillon
58
27
0
08 May 2019
Convergence rates for optimised adaptive importance samplers
Ömer Deniz Akyildiz
Joaquín Míguez
133
31
0
28 Mar 2019
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
100
91
0
02 Feb 2019
Bayesian variational inference for exponential random graph models
Linda S. L. Tan
Nial Friel
69
17
0
10 Nov 2018
Stability of Optimal Filter Higher-Order Derivatives
V. Tadic
Arnaud Doucet
57
4
0
25 Jun 2018
Bias of Particle Approximations to Optimal Filter Derivative
V. Tadic
Arnaud Doucet
73
1
0
25 Jun 2018
Analyticity of Entropy Rates of Continuous-State Hidden Markov Models
V. Tadic
Arnaud Doucet
39
3
0
25 Jun 2018
Particle-based, online estimation of tangent filters with application to parameter estimation in nonlinear state-space models
Jimmy Olsson
Johan Westerborn Alenlöv
85
10
0
22 Dec 2017
Unbiased Markov chain Monte Carlo with couplings
Pierre E. Jacob
J. O'Leary
Yves F. Atchadé
136
73
0
11 Aug 2017
Bridging the Gap between Constant Step Size Stochastic Gradient Descent and Markov Chains
Hadrien Hendrikx
Alain Durmus
Francis R. Bach
127
156
0
20 Jul 2017
Analysis of gradient descent methods with non-diminishing, bounded errors
Arunselvan Ramaswamy
S. Bhatnagar
54
21
0
01 Apr 2016
Gradient Estimation with Simultaneous Perturbation and Compressive Sensing
Vivek Borkar
Vikranth Dwaracherla
Neeraja Sahasrabudhe
62
9
0
27 Nov 2015
1