Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.01298
Cited By
v1
v2 (latest)
Spectral Mixture Kernels for Multi-Output Gaussian Processes
5 September 2017
Gabriel Parra
Felipe A. Tobar
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spectral Mixture Kernels for Multi-Output Gaussian Processes"
40 / 40 papers shown
Title
Spectral Mixture Kernels for Bayesian Optimization
Yi Zhang
Cheng Hua
GP
54
0
0
23 May 2025
PolyMicros: Bootstrapping a Foundation Model for Polycrystalline Material Structure
Michael Buzzy
Andreas E. Robertson
Peng Chen
Surya R. Kalidindi
AI4CE
13
0
0
22 May 2025
Federated Automatic Latent Variable Selection in Multi-output Gaussian Processes
Jingyi Gao
Seokhyun Chung
FedML
55
0
0
24 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
62
0
0
02 Jul 2024
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
54
9
0
19 Sep 2023
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
67
5
0
08 May 2023
GaPT: Gaussian Process Toolkit for Online Regression with Application to Learning Quadrotor Dynamics
Francesco Crocetti
Jeffrey Mao
Alessandro Saviolo
G. Costante
Giuseppe Loianno
GP
52
6
0
14 Mar 2023
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
72
1
0
20 Dec 2022
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Yohan Jung
Jinkyoo Park
BDL
58
0
0
22 Oct 2022
A Principled Method for the Creation of Synthetic Multi-fidelity Data Sets
Clyde Fare
Peter Fenner
Edward O. Pyzer-Knapp
114
2
0
11 Aug 2022
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Thomas M. McDonald
M. Ross
M. Smith
Mauricio A. Alvarez
53
1
0
17 Jun 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
55
8
0
25 Feb 2022
Nonstationary multi-output Gaussian processes via harmonizable spectral mixtures
Matias Altamirano
Felipe A. Tobar
27
6
0
18 Feb 2022
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
33
2
0
30 Oct 2021
Multi-Task Neural Processes
Donggyun Kim
Seongwoong Cho
Wonkwang Lee
Seunghoon Hong
50
0
0
28 Oct 2021
Scalable Multi-Task Gaussian Processes with Neural Embedding of Coregionalization
Haitao Liu
Jiaqi Ding
Xinyu Xie
Xiaomo Jiang
Yusong Zhao
Xiaofang Wang
BDL
50
17
0
20 Sep 2021
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
102
30
0
18 Mar 2021
The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
F. Simpson
A. Boukouvalas
Václav Cadek
E. Sarkans
N. Durrande
43
3
0
11 Mar 2021
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
41
12
0
18 Jan 2021
Cluster-Specific Predictions with Multi-Task Gaussian Processes
Arthur Leroy
Pierre Latouche
Benjamin Guedj
S. Gey
28
4
0
16 Nov 2020
Bayesian Reconstruction of Fourier Pairs
Felipe A. Tobar
Lerko Araya-Hernández
P. Huijse
Petar M. Djurić
43
5
0
09 Nov 2020
Approximate Inference for Spectral Mixture Kernel
Yohan Jung
Kyungwoo Song
Jinkyoo Park
BDL
20
2
0
12 Jun 2020
On Negative Transfer and Structure of Latent Functions in Multi-output Gaussian Processes
Moyan Li
Raed Al Kontar
47
7
0
06 Apr 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
30
5
0
19 Feb 2020
Gaussian process imputation of multiple financial series
T. Wolff
Alejandro Cuevas
Felipe A. Tobar
AI4TS
68
8
0
11 Feb 2020
MOGPTK: The Multi-Output Gaussian Process Toolkit
T. Wolff
Alejandro Cuevas
Felipe A. Tobar
GP
64
48
0
09 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
53
5
0
07 Feb 2020
The Wasserstein-Fourier Distance for Stationary Time Series
Elsa Cazelles
Arnaud Robert
Felipe A. Tobar
AI4TS
55
35
0
11 Dec 2019
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
98
5
0
22 Nov 2019
Band-Limited Gaussian Processes: The Sinc Kernel
Felipe A. Tobar
45
20
0
16 Sep 2019
Latent Function Decomposition for Forecasting Li-ion Battery Cells Capacity: A Multi-Output Convolved Gaussian Process Approach
Abdallah A. Chehade
A. Hussein
BDL
23
16
0
19 Jul 2019
Compositionally-Warped Gaussian Processes
Gonzalo Rios
Felipe A. Tobar
50
43
0
23 Jun 2019
Low-pass filtering as Bayesian inference
Cristobal Valenzuela
Felipe A. Tobar
AI4TS
31
2
0
09 Feb 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
95
10
0
18 Dec 2018
Bayesian Nonparametric Spectral Estimation
Felipe A. Tobar
57
30
0
06 Sep 2018
Multi-Output Convolution Spectral Mixture for Gaussian Processes
Kai Chen
Twan van Laarhoven
P. Groot
Jinsong Chen
E. Marchiori
82
11
0
07 Aug 2018
Multitask Gaussian Process with Hierarchical Latent Interactions
Kai Chen
Twan van Laarhoven
E. Marchiori
Feng Yin
Shuguang Cui
84
6
0
03 Aug 2018
Heterogeneous Multi-output Gaussian Process Prediction
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
61
72
0
19 May 2018
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Gonzalo Rios
Felipe A. Tobar
GP
38
14
0
19 Mar 2018
1