ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01846
  4. Cited By
Symmetric Variational Autoencoder and Connections to Adversarial
  Learning
v1v2 (latest)

Symmetric Variational Autoencoder and Connections to Adversarial Learning

6 September 2017
Liqun Chen
Shuyang Dai
Yunchen Pu
Chunyuan Li
Weiyao Wang
Lawrence Carin
    DRLGAN
ArXiv (abs)PDFHTML

Papers citing "Symmetric Variational Autoencoder and Connections to Adversarial Learning"

34 / 34 papers shown
Title
Joint-stochastic-approximation Autoencoders with Application to Semi-supervised Learning
Joint-stochastic-approximation Autoencoders with Application to Semi-supervised Learning
Wenbo He
Zhijian Ou
DRLBDL
122
0
0
24 May 2025
Improving Adversarial Energy-Based Model via Diffusion Process
Improving Adversarial Energy-Based Model via Diffusion Process
Cong Geng
Tian Han
Peng-Tao Jiang
Hao Zhang
Jinwei Chen
Søren Hauberg
Yue Liu
DiffM
382
5
0
04 Mar 2024
MiniLLM: Knowledge Distillation of Large Language Models
MiniLLM: Knowledge Distillation of Large Language ModelsInternational Conference on Learning Representations (ICLR), 2023
Yuxian Gu
Li Dong
Furu Wei
Shiyu Huang
ALM
519
93
0
14 Jun 2023
Variational Autoencoder Kernel Interpretation and Selection for
  Classification
Variational Autoencoder Kernel Interpretation and Selection for Classification
Fábio Mendonça
S. Mostafa
F. M. Dias
A. Ravelo-García
DRL
110
3
0
10 Sep 2022
Bi-level Doubly Variational Learning for Energy-based Latent Variable
  Models
Bi-level Doubly Variational Learning for Energy-based Latent Variable ModelsComputer Vision and Pattern Recognition (CVPR), 2022
Ge Kan
Jinhu Lu
Tian Wang
Baochang Zhang
Aichun Zhu
Lei Huang
Guodong Guo
H. Snoussi
190
8
0
24 Mar 2022
GATSBI: Generative Adversarial Training for Simulation-Based Inference
GATSBI: Generative Adversarial Training for Simulation-Based InferenceInternational Conference on Learning Representations (ICLR), 2022
Poornima Ramesh
Jan-Matthis Lueckmann
Jan Boelts
Álvaro Tejero-Cantero
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
GAN
183
40
0
12 Mar 2022
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Lifelong Generative Modelling Using Dynamic Expansion Graph Model
Fei Ye
A. Bors
CLL
170
13
0
15 Dec 2021
Lifelong Mixture of Variational Autoencoders
Lifelong Mixture of Variational AutoencodersIEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021
Fei Ye
A. Bors
DRL
103
32
0
09 Jul 2021
Symmetric Wasserstein Autoencoders
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffMGAN
140
0
0
24 Jun 2021
An Interpretable Neural Network for Parameter Inference
An Interpretable Neural Network for Parameter Inference
Johann Pfitzinger
166
0
0
10 Jun 2021
AVAE: Adversarial Variational Auto Encoder
AVAE: Adversarial Variational Auto EncoderInternational Conference on Pattern Recognition (ICPR), 2020
Antoine Plumerault
Hervé Le Borgne
C´eline Hudelot
GANDRL
121
19
0
21 Dec 2020
Wasserstein Contrastive Representation Distillation
Wasserstein Contrastive Representation DistillationComputer Vision and Pattern Recognition (CVPR), 2020
Liqun Chen
Dong Wang
Zhe Gan
Jingjing Liu
Ricardo Henao
Lawrence Carin
165
107
0
15 Dec 2020
Learning latent representations across multiple data domains using
  Lifelong VAEGAN
Learning latent representations across multiple data domains using Lifelong VAEGAN
Fei Ye
A. Bors
SyDaCLL
148
78
0
20 Jul 2020
Bidirectional Generative Modeling Using Adversarial Gradient Estimation
Bidirectional Generative Modeling Using Adversarial Gradient Estimation
Xinwei Shen
Tong Zhang
Kani Chen
GAN
164
9
0
21 Feb 2020
Expected Information Maximization: Using the I-Projection for Mixture
  Density Estimation
Expected Information Maximization: Using the I-Projection for Mixture Density EstimationInternational Conference on Learning Representations (ICLR), 2020
P. Becker
Oleg Arenz
Gerhard Neumann
123
16
0
23 Jan 2020
Zero-Shot Recognition via Optimal Transport
Zero-Shot Recognition via Optimal Transport
Wenlin Wang
Hongteng Xu
Guoyin Wang
Wenqi Wang
Lawrence Carin
OT
140
2
0
20 Oct 2019
Variationally Inferred Sampling Through a Refined Bound for
  Probabilistic Programs
Variationally Inferred Sampling Through a Refined Bound for Probabilistic Programs
Víctor Gallego
D. Insua
BDL
225
1
0
26 Aug 2019
Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss
  Function
Tutorial: Deriving the Standard Variational Autoencoder (VAE) Loss Function
Stephen G. Odaibo
GANBDLDRL
114
61
0
21 Jul 2019
Semantics Preserving Adversarial Learning
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAMLGAN
358
2
0
10 Mar 2019
Learning Disentangled Representations with Reference-Based Variational
  Autoencoders
Learning Disentangled Representations with Reference-Based Variational Autoencoders
Adria Ruiz
Oriol Martínez
Xavier Binefa
Jakob Verbeek
OODCoGeDRL
143
27
0
24 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Jianlong Wu
P. Perdikaris
SyDaBDLAI4CE
108
62
0
15 Jan 2019
Adaptive Density Estimation for Generative Models
Adaptive Density Estimation for Generative Models
Thomas Lucas
K. Shmelkov
Alahari Karteek
Cordelia Schmid
Jakob Verbeek
GANDRL
334
32
0
04 Jan 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
197
10
0
03 Jan 2019
Divergence Triangle for Joint Training of Generator Model, Energy-based
  Model, and Inference Model
Divergence Triangle for Joint Training of Generator Model, Energy-based Model, and Inference Model
Tian Han
Erik Nijkamp
Xiaolin Fang
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
211
69
0
28 Dec 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural
  Networks
Adversarial Uncertainty Quantification in Physics-Informed Neural NetworksJournal of Computational Physics (JCP), 2018
Jianlong Wu
P. Perdikaris
AI4CEPINN
270
387
0
09 Nov 2018
Variational Discriminator Bottleneck: Improving Imitation Learning,
  Inverse RL, and GANs by Constraining Information Flow
Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow
Xue Bin Peng
Angjoo Kanazawa
Sam Toyer
Pieter Abbeel
Sergey Levine
213
232
0
01 Oct 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
229
15
0
05 Aug 2018
JointGAN: Multi-Domain Joint Distribution Learning with Generative
  Adversarial Nets
JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets
Yunchen Pu
Shuyang Dai
Zhe Gan
Weiyao Wang
Guoyin Wang
Yizhe Zhang
Ricardo Henao
Lawrence Carin
GANOOD
137
43
0
08 Jun 2018
Generative Modeling by Inclusive Neural Random Fields with Applications
  in Image Generation and Anomaly Detection
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
334
31
0
01 Jun 2018
Network Learning with Local Propagation
Network Learning with Local Propagation
Dimche Kostadinov
Behrooz Razeghi
Sohrab Ferdowsi
Svyatoslav Voloshynovskiy
82
0
0
20 May 2018
Adversarial Time-to-Event Modeling
Adversarial Time-to-Event Modeling
Paidamoyo Chapfuwa
Chenyang Tao
Chunyuan Li
C. Page
B. Goldstein
Lawrence Carin
Ricardo Henao
AAMLOODCML
149
95
0
09 Apr 2018
Adversarial Symmetric Variational Autoencoder
Adversarial Symmetric Variational Autoencoder
Yunchen Pu
Weiyao Wang
Ricardo Henao
Liqun Chen
Zhe Gan
Chunyuan Li
Lawrence Carin
DRLGAN
235
79
0
14 Nov 2017
Triangle Generative Adversarial Networks
Triangle Generative Adversarial Networks
Zhe Gan
Liqun Chen
Weiyao Wang
Yunchen Pu
Yizhe Zhang
Hao Liu
Chunyuan Li
Lawrence Carin
GANOOD
160
141
0
19 Sep 2017
On Unifying Deep Generative Models
On Unifying Deep Generative ModelsInternational Conference on Learning Representations (ICLR), 2017
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRLGAN
337
128
0
02 Jun 2017
1