ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.01894
  4. Cited By
Convolutional Gaussian Processes

Convolutional Gaussian Processes

6 September 2017
Mark van der Wilk
C. Rasmussen
J. Hensman
    BDL
ArXiv (abs)PDFHTML

Papers citing "Convolutional Gaussian Processes"

50 / 56 papers shown
Title
The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning
The Catechol Benchmark: Time-series Solvent Selection Data for Few-shot Machine Learning
Toby Boyne
Juan S. Campos
Becky D Langdon
Jixiang Qing
Yilin Xie
...
Kim E. Jelfs
Sarah Boyall
Thomas M. Dixon
Linden Schrecker
Jose Pablo Folch
12
0
0
09 Jun 2025
Regularized Multi-output Gaussian Convolution Process with Domain
  Adaptation
Regularized Multi-output Gaussian Convolution Process with Domain Adaptation
Wang Xinming
Wang Chao
Song Xuan
Kirby Levi
Wu Jianguo
60
7
0
04 Sep 2024
Uncertainty Quantification on Graph Learning: A Survey
Uncertainty Quantification on Graph Learning: A Survey
Chao Chen
Chenghua Guo
Rui Xu
Xiangwen Liao
Xi Zhang
Sihong Xie
Hui Xiong
Mohit Bansal
AI4CE
86
1
0
23 Apr 2024
Hybrid Modeling Design Patterns
Hybrid Modeling Design Patterns
Maja Rudolph
Stefan Kurz
Barbara Rakitsch
AI4CE
85
9
0
29 Dec 2023
Gaussian process deconvolution
Gaussian process deconvolution
Felipe A. Tobar
Arnaud Robert
Jorge F. Silva
67
5
0
08 May 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
89
7
0
11 Apr 2023
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian
  Optimization
Combining Multi-Fidelity Modelling and Asynchronous Batch Bayesian Optimization
Jose Pablo Folch
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
60
26
0
11 Nov 2022
Globally Gated Deep Linear Networks
Globally Gated Deep Linear Networks
Qianyi Li
H. Sompolinsky
AI4CE
74
11
0
31 Oct 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
95
0
0
27 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
71
6
0
30 May 2022
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
M. Kandemir
Barbara Rakitsch
127
12
0
24 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
73
4
0
15 May 2022
Unsupervised Restoration of Weather-affected Images using Deep Gaussian
  Process-based CycleGAN
Unsupervised Restoration of Weather-affected Images using Deep Gaussian Process-based CycleGAN
R. Yasarla
Vishwanath A. Sindagi
Vishal M. Patel
135
2
0
23 Apr 2022
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
33
2
0
30 Oct 2021
Modular Gaussian Processes for Transfer Learning
Modular Gaussian Processes for Transfer Learning
P. Moreno-Muñoz
Antonio Artés-Rodríguez
Mauricio A. Alvarez
36
4
0
26 Oct 2021
Pre-trained Gaussian processes for Bayesian optimization
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
151
46
0
16 Sep 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
133
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDLUQCV
103
31
0
10 May 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDLAI4CE
358
17
0
23 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
86
23
0
12 Apr 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
41
12
0
18 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
127
51
0
27 Dec 2020
Guiding Neural Network Initialization via Marginal Likelihood
  Maximization
Guiding Neural Network Initialization via Marginal Likelihood Maximization
Anthony S. Tai
Chunfeng Huang
22
0
0
17 Dec 2020
Statistical Mechanics of Deep Linear Neural Networks: The
  Back-Propagating Kernel Renormalization
Statistical Mechanics of Deep Linear Neural Networks: The Back-Propagating Kernel Renormalization
Qianyi Li
H. Sompolinsky
174
73
0
07 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
353
1,939
0
12 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
102
61
0
08 Nov 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDLUQCV
76
208
0
22 Jun 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
112
60
0
17 May 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCVBDL
42
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
100
95
0
02 Mar 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
81
15
0
11 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
82
26
0
15 Jan 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
154
202
0
28 Oct 2019
A Fine-Grained Spectral Perspective on Neural Networks
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
118
113
0
24 Jul 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
75
77
0
19 Jun 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
67
19
0
27 May 2019
Graph Convolutional Gaussian Processes
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
118
36
0
14 May 2019
On Exact Computation with an Infinitely Wide Neural Net
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
257
928
0
26 Apr 2019
Variational Inference of Joint Models using Multivariate Gaussian
  Convolution Processes
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
85
17
0
09 Mar 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCVBDL
161
32
0
15 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
185
289
0
13 Feb 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINNAI4CE
124
874
0
18 Jan 2019
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
95
10
0
18 Dec 2018
A Gaussian Process perspective on Convolutional Neural Networks
A Gaussian Process perspective on Convolutional Neural Networks
Anastasia Borovykh
81
19
0
25 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian
  Processes
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCVBDL
119
310
0
11 Oct 2018
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
Bayesian Semi-supervised Learning with Graph Gaussian Processes
Bayesian Semi-supervised Learning with Graph Gaussian Processes
Yin Cheng Ng
Nicolo Colombo
Ricardo M. A. Silva
BDL
93
90
0
12 Sep 2018
Deep Convolutional Networks as shallow Gaussian Processes
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDLUQCV
114
271
0
16 Aug 2018
12
Next