ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.02023
  4. Cited By
CausalGAN: Learning Causal Implicit Generative Models with Adversarial
  Training

CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training

6 September 2017
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
    GAN
    OOD
ArXivPDFHTML

Papers citing "CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training"

45 / 45 papers shown
Title
Counterfactual Generative Modeling with Variational Causal Inference
Counterfactual Generative Modeling with Variational Causal Inference
Yulun Wu
Louie McConnell
Claudia Iriondo
CML
BDL
24
0
0
16 Oct 2024
Consistency of Neural Causal Partial Identification
Consistency of Neural Causal Partial Identification
Jiyuan Tan
Jose Blanchet
Vasilis Syrgkanis
CML
32
0
0
24 May 2024
Causal Diffusion Autoencoders: Toward Counterfactual Generation via
  Diffusion Probabilistic Models
Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models
Aneesh Komanduri
Chengli Zhao
Feng Chen
Xintao Wu
CML
DiffM
30
4
0
27 Apr 2024
Benchmarking Counterfactual Image Generation
Benchmarking Counterfactual Image Generation
Thomas Melistas
Nikos Spyrou
Nefeli Gkouti
Pedro Sanchez
Athanasios Vlontzos
Yannis Panagakis
G. Papanastasiou
Sotirios A. Tsaftaris
EGVM
CML
41
7
0
29 Mar 2024
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for
  Spatiotemporal Time Series Imputation
CASPER: Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation
Baoyu Jing
Dawei Zhou
Kan Ren
Carl Yang
CML
AI4TS
32
6
0
18 Mar 2024
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Causal Structure Representation Learning of Confounders in Latent Space for Recommendation
Hangtong Xu
Yuanbo Xu
Yongjian Yang
Fuzhen Zhuang
CML
69
0
0
02 Nov 2023
Towards Characterizing Domain Counterfactuals For Invertible Latent
  Causal Models
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Zeyu Zhou
Ruqi Bai
Sean Kulinski
Murat Kocaoglu
David I. Inouye
CML
24
1
0
20 Jun 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming-Yu Liu
Bryon Aragam
Liam Solus
CML
18
3
0
31 May 2023
Optimal transport and Wasserstein distances for causal models
Optimal transport and Wasserstein distances for causal models
Patrick Cheridito
Stephan Eckstein
OT
31
7
0
24 Mar 2023
Towards Learning and Explaining Indirect Causal Effects in Neural
  Networks
Towards Learning and Explaining Indirect Causal Effects in Neural Networks
Abbaavaram Gowtham Reddy
Saketh Bachu
Harsh Nilesh Pathak
Ben Godfrey
V. Balasubramanian
V. Varshaneya
Satya Narayanan Kar
CML
26
0
0
24 Mar 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Biwei Huang
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
45
11
0
29 Jan 2023
On the causality-preservation capabilities of generative modelling
On the causality-preservation capabilities of generative modelling
Yves-Cédric Bauwelinckx
Jan Dhaene
Tim Verdonck
Milan van den Heuvel
CML
AI4CE
27
0
0
03 Jan 2023
A Short Survey of Systematic Generalization
A Short Survey of Systematic Generalization
Yuanpeng Li
AI4CE
22
1
0
22 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
26
11
0
07 Nov 2022
Causal Structural Hypothesis Testing and Data Generation Models
Causal Structural Hypothesis Testing and Data Generation Models
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Sunay Bhat
Gregory Pottie
CML
27
1
0
20 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
39
31
0
30 Sep 2022
Deep Structural Causal Shape Models
Deep Structural Causal Shape Models
Rajat Rasal
Daniel Coelho De Castro
Nick Pawlowski
Ben Glocker
3DV
MedIm
28
12
0
23 Aug 2022
De-Biasing Generative Models using Counterfactual Methods
De-Biasing Generative Models using Counterfactual Methods
Sunay Bhat
Jeffrey Q. Jiang
Omead Brandon Pooladzandi
Gregory Pottie
CML
21
7
0
04 Jul 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
13
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
DÁRTAGNAN: Counterfactual Video Generation
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGen
CML
MedIm
20
19
0
03 Jun 2022
Principled Knowledge Extrapolation with GANs
Principled Knowledge Extrapolation with GANs
Ruili Feng
Jie Xiao
Kecheng Zheng
Deli Zhao
Jingren Zhou
Qibin Sun
Zhengjun Zha
54
8
0
21 May 2022
Do learned representations respect causal relationships?
Do learned representations respect causal relationships?
Lan Wang
Vishnu Naresh Boddeti
NAI
CML
OOD
13
6
0
02 Apr 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for
  multidimensional features
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
19
3
0
25 Jan 2022
A Causal Lens for Controllable Text Generation
A Causal Lens for Controllable Text Generation
Zhiting Hu
Erran L. Li
29
59
0
22 Jan 2022
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
13
21
0
10 Dec 2021
Matching Learned Causal Effects of Neural Networks with Domain Priors
Matching Learned Causal Effects of Neural Networks with Domain Priors
Sai Srinivas Kancheti
Abbavaram Gowtham Reddy
V. Balasubramanian
Amit Sharma
CML
14
11
0
24 Nov 2021
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative
  Networks
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks
A. Saha
Trent Kyono
J. Linmans
M. Schaar
CML
14
105
0
25 Oct 2021
A Taxonomy for Inference in Causal Model Families
A Taxonomy for Inference in Causal Model Families
Matej Zevcević
D. Dhami
Kristian Kersting
9
1
0
22 Oct 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box
  Model Explanation
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
32
10
0
09 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
13
16
0
04 Sep 2021
Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial
  Networks
Causal-TGAN: Generating Tabular Data Using Causal Generative Adversarial Networks
Bingyang Wen
Luis Oliveros Colon
K. P. Subbalakshmi
R. Chandramouli
CML
GAN
36
18
0
21 Apr 2021
Causal Attention for Vision-Language Tasks
Causal Attention for Vision-Language Tasks
Xu Yang
Hanwang Zhang
Guojun Qi
Jianfei Cai
CML
23
148
0
05 Mar 2021
Counterfactual Generative Networks
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
28
123
0
15 Jan 2021
Evaluating and Mitigating Bias in Image Classifiers: A Causal
  Perspective Using Counterfactuals
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals
Saloni Dash
V. Balasubramanian
Amit Sharma
CML
19
64
0
17 Sep 2020
A causal view of compositional zero-shot recognition
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
45
117
0
25 Jun 2020
Unbiased Auxiliary Classifier GANs with MINE
Unbiased Auxiliary Classifier GANs with MINE
Ligong Han
Anastasis Stathopoulos
Tao Xue
Dimitris N. Metaxas
4
13
0
13 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
26
44
0
18 Apr 2020
Explaining Visual Models by Causal Attribution
Explaining Visual Models by Causal Attribution
Álvaro Parafita
Jordi Vitrià
CML
FAtt
54
35
0
19 Sep 2019
Leveraging Latent Features for Local Explanations
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
33
37
0
29 May 2019
The Medical Deconfounder: Assessing Treatment Effects with Electronic
  Health Records
The Medical Deconfounder: Assessing Treatment Effects with Electronic Health Records
Linying Zhang
Yixin Wang
A. Ostropolets
J. J. Mulgrave
David M. Blei
G. Hripcsak
BDL
CML
11
1
0
03 Apr 2019
Robustness of Conditional GANs to Noisy Labels
Robustness of Conditional GANs to Noisy Labels
Kerry J. Halupka
A. Khetan
Zinan Lin
Stephen Moore
NoLa
16
79
0
08 Nov 2018
On the Conditional Logic of Simulation Models
On the Conditional Logic of Simulation Models
D. Ibeling
Thomas F. Icard
LRM
6
9
0
08 May 2018
Geometrical Insights for Implicit Generative Modeling
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
16
49
0
21 Dec 2017
Conditional Image Synthesis With Auxiliary Classifier GANs
Conditional Image Synthesis With Auxiliary Classifier GANs
Augustus Odena
C. Olah
Jonathon Shlens
GAN
224
3,189
0
30 Oct 2016
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
65
390
0
20 Oct 2016
1