Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.05254
Cited By
Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks
15 September 2017
Marco Schreyer
Timur Sattarov
Damian Borth
Andreas Dengel
Bernd Reimer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Detection of Anomalies in Large Scale Accounting Data using Deep Autoencoder Networks"
9 / 9 papers shown
Title
Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing
Marco Schreyer
Hamed Hemati
Damian Borth
M. Vasarhelyi
FedML
39
3
0
26 Oct 2022
Explaining Anomalies using Denoising Autoencoders for Financial Tabular Data
Timur Sattarov
Dayananda Herurkar
Jörn Hees
30
8
0
21 Sep 2022
RESHAPE: Explaining Accounting Anomalies in Financial Statement Audits by enhancing SHapley Additive exPlanations
Ricardo Müller
Marco Schreyer
Timur Sattarov
Damian Borth
AAML
MLAU
24
7
0
19 Sep 2022
Federated and Privacy-Preserving Learning of Accounting Data in Financial Statement Audits
Marco Schreyer
Timur Sattarov
Damian Borth
MLAU
29
15
0
26 Aug 2022
Multi-view Contrastive Self-Supervised Learning of Accounting Data Representations for Downstream Audit Tasks
Marco Schreyer
Timur Sattarov
Damian Borth
MLAU
29
15
0
23 Sep 2021
SSD: A Unified Framework for Self-Supervised Outlier Detection
Vikash Sehwag
M. Chiang
Prateek Mittal
OODD
31
330
0
22 Mar 2021
Detecting Anomalous Invoice Line Items in the Legal Case Lifecycle
V. Constantinou
M. Kabiri
AILaw
16
2
0
28 Dec 2020
Quant GANs: Deep Generation of Financial Time Series
Magnus Wiese
R. Knobloch
R. Korn
Peter Kretschmer
GAN
AI4TS
AIFin
22
273
0
15 Jul 2019
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
1