ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.06009
  4. Cited By
Revisiting the Arcade Learning Environment: Evaluation Protocols and
  Open Problems for General Agents

Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents

18 September 2017
Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
J. Veness
Matthew J. Hausknecht
Michael Bowling
ArXivPDFHTML

Papers citing "Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents"

50 / 146 papers shown
Title
Reinforcement Learning in Practice: Opportunities and Challenges
Reinforcement Learning in Practice: Opportunities and Challenges
Yuxi Li
OffRL
38
9
0
23 Feb 2022
Learning Causal Overhypotheses through Exploration in Children and
  Computational Models
Learning Causal Overhypotheses through Exploration in Children and Computational Models
Eliza Kosoy
Adrian Liu
Jasmine Collins
David M. Chan
Jessica B. Hamrick
Nan Rosemary Ke
Sandy H Huang
Bryanna Kaufmann
John F. Canny
Alison Gopnik
CML
22
9
0
21 Feb 2022
Interpretable pipelines with evolutionarily optimized modules for RL
  tasks with visual inputs
Interpretable pipelines with evolutionarily optimized modules for RL tasks with visual inputs
Leonardo Lucio Custode
Giovanni Iacca
27
13
0
10 Feb 2022
Wasserstein Distance Maximizing Intrinsic Control
Wasserstein Distance Maximizing Intrinsic Control
Ishan Durugkar
Steven Hansen
Stephen Spencer
Volodymyr Mnih
26
6
0
28 Oct 2021
The Difficulty of Passive Learning in Deep Reinforcement Learning
The Difficulty of Passive Learning in Deep Reinforcement Learning
Georg Ostrovski
Pablo Samuel Castro
Will Dabney
OffRL
19
57
0
26 Oct 2021
Self-Consistent Models and Values
Self-Consistent Models and Values
Roy Miles
Kate Baumli
Zita Marinho
Angelos Filos
Matteo Hessel
Hado van Hasselt
David Silver
38
8
0
25 Oct 2021
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual
  Reinforcement Learning Agents
CORA: Benchmarks, Baselines, and Metrics as a Platform for Continual Reinforcement Learning Agents
Sam Powers
Eliot Xing
Eric Kolve
Roozbeh Mottaghi
Abhinav Gupta
OffRL
36
38
0
19 Oct 2021
GrowSpace: Learning How to Shape Plants
GrowSpace: Learning How to Shape Plants
Yasmeen Hitti
Ionelia Buzatu
Manuel Del Verme
M. Lefsrud
Florian Golemo
A. Durand
19
2
0
15 Oct 2021
Explaining Deep Reinforcement Learning Agents In The Atari Domain
  through a Surrogate Model
Explaining Deep Reinforcement Learning Agents In The Atari Domain through a Surrogate Model
Alexander Sieusahai
Matthew J. Guzdial
35
13
0
07 Oct 2021
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
OffRL
41
23
0
05 Oct 2021
Large Batch Experience Replay
Large Batch Experience Replay
Thibault Lahire
M. Geist
Emmanuel Rachelson
OffRL
56
13
0
04 Oct 2021
On Bonus-Based Exploration Methods in the Arcade Learning Environment
On Bonus-Based Exploration Methods in the Arcade Learning Environment
Adrien Ali Taïga
W. Fedus
Marlos C. Machado
Aaron Courville
Marc G. Bellemare
21
58
0
22 Sep 2021
Benchmarking the Spectrum of Agent Capabilities
Benchmarking the Spectrum of Agent Capabilities
Danijar Hafner
ELM
33
128
0
14 Sep 2021
Exploration in Deep Reinforcement Learning: From Single-Agent to
  Multiagent Domain
Exploration in Deep Reinforcement Learning: From Single-Agent to Multiagent Domain
Jianye Hao
Tianpei Yang
Hongyao Tang
Chenjia Bai
Jinyi Liu
Zhaopeng Meng
Peng Liu
Zhen Wang
OffRL
38
93
0
14 Sep 2021
Bootstrapped Meta-Learning
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
An Oracle and Observations for the OpenAI Gym / ALE Freeway Environment
An Oracle and Observations for the OpenAI Gym / ALE Freeway Environment
J. Plank
Catherine D. Schuman
Robert M. Patton
26
0
0
02 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
61
639
0
30 Aug 2021
When should agents explore?
When should agents explore?
Miruna Pislar
David Szepesvari
Georg Ostrovski
Diana Borsa
Tom Schaul
40
22
0
26 Aug 2021
A Pragmatic Look at Deep Imitation Learning
A Pragmatic Look at Deep Imitation Learning
Kai Arulkumaran
D. Lillrank
29
9
0
04 Aug 2021
The Benchmark Lottery
The Benchmark Lottery
Mostafa Dehghani
Yi Tay
A. Gritsenko
Zhe Zhao
N. Houlsby
Fernando Diaz
Donald Metzler
Oriol Vinyals
42
89
0
14 Jul 2021
Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting
  Pot
Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting Pot
Joel Z. Leibo
Edgar A. Duénez-Guzmán
A. Vezhnevets
J. Agapiou
P. Sunehag
Raphael Köster
Jayd Matyas
Charlie Beattie
Igor Mordatch
T. Graepel
OffRL
58
104
0
14 Jul 2021
Recent Advances in Leveraging Human Guidance for Sequential
  Decision-Making Tasks
Recent Advances in Leveraging Human Guidance for Sequential Decision-Making Tasks
Ruohan Zhang
F. Torabi
Garrett A. Warnell
Peter Stone
83
28
0
13 Jul 2021
CoBERL: Contrastive BERT for Reinforcement Learning
CoBERL: Contrastive BERT for Reinforcement Learning
Andrea Banino
Adria Puidomenech Badia
Jacob Walker
Tim Scholtes
Jovana Mitrović
Charles Blundell
OffRL
32
36
0
12 Jul 2021
Improve Agents without Retraining: Parallel Tree Search with Off-Policy
  Correction
Improve Agents without Retraining: Parallel Tree Search with Off-Policy Correction
Assaf Hallak
Gal Dalal
Steven Dalton
I. Frosio
Shie Mannor
Gal Chechik
OffRL
OnRL
35
9
0
04 Jul 2021
Systematic Evaluation of Causal Discovery in Visual Model Based
  Reinforcement Learning
Systematic Evaluation of Causal Discovery in Visual Model Based Reinforcement Learning
Nan Rosemary Ke
Aniket Didolkar
Sarthak Mittal
Anirudh Goyal
Guillaume Lajoie
Stefan Bauer
Danilo Jimenez Rezende
Yoshua Bengio
Michael C. Mozer
C. Pal
CML
29
54
0
02 Jul 2021
Convergent and Efficient Deep Q Network Algorithm
Convergent and Efficient Deep Q Network Algorithm
Zhikang T. Wang
Masahito Ueda
27
12
0
29 Jun 2021
SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual
  Policies
SECANT: Self-Expert Cloning for Zero-Shot Generalization of Visual Policies
Linxi Fan
Guanzhi Wang
De-An Huang
Zhiding Yu
Li Fei-Fei
Yuke Zhu
Anima Anandkumar
OffRL
30
63
0
17 Jun 2021
Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
Going Beyond Linear Transformers with Recurrent Fast Weight Programmers
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
33
57
0
11 Jun 2021
Investigating Alternatives to the Root Mean Square for Adaptive Gradient
  Methods
Investigating Alternatives to the Root Mean Square for Adaptive Gradient Methods
Brett Daley
Chris Amato
ODL
40
0
0
10 Jun 2021
MICo: Improved representations via sampling-based state similarity for
  Markov decision processes
MICo: Improved representations via sampling-based state similarity for Markov decision processes
Pablo Samuel Castro
Tyler Kastner
Prakash Panangaden
Mark Rowland
48
35
0
03 Jun 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
24
53
0
11 May 2021
Online and Offline Reinforcement Learning by Planning with a Learned
  Model
Online and Offline Reinforcement Learning by Planning with a Learned Model
Julian Schrittwieser
Thomas Hubert
Amol Mandhane
M. Barekatain
Ioannis Antonoglou
David Silver
OffRL
31
114
0
13 Apr 2021
Regularized Softmax Deep Multi-Agent $Q$-Learning
Regularized Softmax Deep Multi-Agent QQQ-Learning
L. Pan
Tabish Rashid
Bei Peng
Longbo Huang
Shimon Whiteson
42
31
0
22 Mar 2021
Enhanced Pub/Sub Communications for Massive IoT Traffic with SARSA
  Reinforcement Learning
Enhanced Pub/Sub Communications for Massive IoT Traffic with SARSA Reinforcement Learning
Carlos R. E. Arruda
Pedro F. Moraes
N. Agoulmine
Joberto S. B. Martins
15
7
0
03 Jan 2021
Revisiting Rainbow: Promoting more Insightful and Inclusive Deep
  Reinforcement Learning Research
Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
J. Obando-Ceron
Pablo Samuel Castro
OffRL
20
105
0
20 Nov 2020
DeepAveragers: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs
DeepAveragers: Offline Reinforcement Learning by Solving Derived Non-Parametric MDPs
Aayam Shrestha
Stefan Lee
Prasad Tadepalli
Alan Fern
OffRL
55
23
0
18 Oct 2020
Mastering Atari with Discrete World Models
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
48
819
0
05 Oct 2020
Revisiting Fundamentals of Experience Replay
Revisiting Fundamentals of Experience Replay
W. Fedus
Prajit Ramachandran
Rishabh Agarwal
Yoshua Bengio
Hugo Larochelle
Mark Rowland
Will Dabney
KELM
OffRL
30
234
0
13 Jul 2020
Data-Efficient Reinforcement Learning with Self-Predictive
  Representations
Data-Efficient Reinforcement Learning with Self-Predictive Representations
Max Schwarzer
Ankesh Anand
Rishab Goel
R. Devon Hjelm
Aaron Courville
Philip Bachman
41
310
0
12 Jul 2020
Learning Abstract Models for Strategic Exploration and Fast Reward
  Transfer
Learning Abstract Models for Strategic Exploration and Fast Reward Transfer
E. Liu
Ramtin Keramati
Sudarshan Seshadri
Kelvin Guu
Panupong Pasupat
Emma Brunskill
Percy Liang
OffRL
27
5
0
12 Jul 2020
Selective Dyna-style Planning Under Limited Model Capacity
Selective Dyna-style Planning Under Limited Model Capacity
Zaheer Abbas
Samuel Sokota
Erin J. Talvitie
Martha White
25
32
0
05 Jul 2020
Automatic Data Augmentation for Generalization in Deep Reinforcement
  Learning
Automatic Data Augmentation for Generalization in Deep Reinforcement Learning
Roberta Raileanu
M. Goldstein
Denis Yarats
Ilya Kostrikov
Rob Fergus
OffRL
22
109
0
23 Jun 2020
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
38
125
0
22 Jun 2020
Re-understanding Finite-State Representations of Recurrent Policy
  Networks
Re-understanding Finite-State Representations of Recurrent Policy Networks
Mohamad H. Danesh
Anurag Koul
Alan Fern
Saeed Khorram
31
21
0
06 Jun 2020
Temporally-Extended ε-Greedy Exploration
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
33
0
02 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
65
225
0
01 Jun 2020
Probabilistic Guarantees for Safe Deep Reinforcement Learning
Probabilistic Guarantees for Safe Deep Reinforcement Learning
E. Bacci
David Parker
19
27
0
14 May 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
351
0
27 Apr 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
93
1,935
0
11 Apr 2020
Rolling Horizon Evolutionary Algorithms for General Video Game Playing
Rolling Horizon Evolutionary Algorithms for General Video Game Playing
Raluca D. Gaina
Sam Devlin
Simon Lucas
Diego Perez-Liebana
21
21
0
27 Mar 2020
Previous
123
Next