Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.06030
Cited By
N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning
18 September 2017
A. Ashok
Nicholas Rhinehart
Fares N. Beainy
Kris M. Kitani
Re-assign community
ArXiv
PDF
HTML
Papers citing
"N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning"
23 / 23 papers shown
Title
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
18
9
0
02 Jun 2023
Combining Multi-Objective Bayesian Optimization with Reinforcement Learning for TinyML
M. Deutel
G. Kontes
Christopher Mutschler
Jürgen Teich
39
0
0
23 May 2023
Automatic Attention Pruning: Improving and Automating Model Pruning using Attentions
Kaiqi Zhao
Animesh Jain
Ming Zhao
19
9
0
14 Mar 2023
NAS-based Recursive Stage Partial Network (RSPNet) for Light-Weight Semantic Segmentation
Yi-Chun Wang
J. Hsieh
Ming-Ching Chang
18
1
0
03 Oct 2022
Distributed Training for Deep Learning Models On An Edge Computing Network Using ShieldedReinforcement Learning
Tanmoy Sen
Haiying Shen
OffRL
11
5
0
01 Jun 2022
DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge Devices
Xueyu Hou
Yongjie Guan
Tao Han
Ning Zhang
9
41
0
03 Feb 2022
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for Efficient Distillation
Sumanth Chennupati
Mohammad Mahdi Kamani
Zhongwei Cheng
Lin Chen
19
4
0
19 Oct 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
19
20
0
07 May 2021
Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression
Cody Blakeney
Xiaomin Li
Yan Yan
Ziliang Zong
27
39
0
05 Dec 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,835
0
09 Jun 2020
An Overview of Neural Network Compression
James OÑeill
AI4CE
40
98
0
05 Jun 2020
A Comprehensive Survey of Neural Architecture Search: Challenges and Solutions
Pengzhen Ren
Yun Xiao
Xiaojun Chang
Po-Yao (Bernie) Huang
Zhihui Li
Xiaojiang Chen
Xin Wang
AI4CE
29
653
0
01 Jun 2020
Residual Knowledge Distillation
Mengya Gao
Yujun Shen
Quanquan Li
Chen Change Loy
6
28
0
21 Feb 2020
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
Dor Livne
Kobi Cohen
24
50
0
14 Jan 2020
Towards Oracle Knowledge Distillation with Neural Architecture Search
Minsoo Kang
Jonghwan Mun
Bohyung Han
FedML
20
43
0
29 Nov 2019
Distilled Siamese Networks for Visual Tracking
Jianbing Shen
Yuanpei Liu
Xingping Dong
Xiankai Lu
F. Khan
S. Hoi
11
101
0
24 Jul 2019
Similarity-Preserving Knowledge Distillation
Frederick Tung
Greg Mori
39
957
0
23 Jul 2019
OICSR: Out-In-Channel Sparsity Regularization for Compact Deep Neural Networks
Jiashi Li
Q. Qi
Jingyu Wang
Ce Ge
Yujian Betterest Li
Zhangzhang Yue
Haifeng Sun
BDL
CML
13
53
0
28 May 2019
Auto Deep Compression by Reinforcement Learning Based Actor-Critic Structure
Hamed Hakkak
OffRL
AI4CE
13
1
0
08 Jul 2018
Resource-Efficient Neural Architect
Yanqi Zhou
S. Ebrahimi
Sercan Ö. Arik
Haonan Yu
Hairong Liu
G. Diamos
9
64
0
12 Jun 2018
Path-Level Network Transformation for Efficient Architecture Search
Han Cai
Jiacheng Yang
Weinan Zhang
Song Han
Yong Yu
19
210
0
07 Jun 2018
AMC: AutoML for Model Compression and Acceleration on Mobile Devices
Yihui He
Ji Lin
Zhijian Liu
Hanrui Wang
Li-Jia Li
Song Han
33
1,339
0
10 Feb 2018
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
264
5,326
0
05 Nov 2016
1