ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.06129
  4. Cited By
When is a Convolutional Filter Easy To Learn?

When is a Convolutional Filter Easy To Learn?

18 September 2017
S. Du
J. Lee
Yuandong Tian
    MLT
ArXivPDFHTML

Papers citing "When is a Convolutional Filter Easy To Learn?"

27 / 27 papers shown
Title
How does promoting the minority fraction affect generalization? A
  theoretical study of the one-hidden-layer neural network on group imbalance
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
41
4
0
12 Mar 2024
Over-Parameterization Exponentially Slows Down Gradient Descent for
  Learning a Single Neuron
Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron
Weihang Xu
S. Du
31
16
0
20 Feb 2023
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Parameter identifiability of a deep feedforward ReLU neural network
Parameter identifiability of a deep feedforward ReLU neural network
Joachim Bona-Pellissier
François Bachoc
François Malgouyres
41
14
0
24 Dec 2021
ReLU Regression with Massart Noise
ReLU Regression with Massart Noise
Ilias Diakonikolas
Jongho Park
Christos Tzamos
50
11
0
10 Sep 2021
From Local Pseudorandom Generators to Hardness of Learning
From Local Pseudorandom Generators to Hardness of Learning
Amit Daniely
Gal Vardi
109
30
0
20 Jan 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Learning Deep ReLU Networks Is Fixed-Parameter Tractable
Learning Deep ReLU Networks Is Fixed-Parameter Tractable
Sitan Chen
Adam R. Klivans
Raghu Meka
22
36
0
28 Sep 2020
Directional Pruning of Deep Neural Networks
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
13
33
0
16 Jun 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
11
4
0
22 Feb 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive
  Learning
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
35
962
0
24 Jan 2019
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
16
93
0
24 Jan 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
22
446
0
21 Nov 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
M. Tomizuka
ODL
21
1,122
0
09 Nov 2018
Learning Two-layer Neural Networks with Symmetric Inputs
Learning Two-layer Neural Networks with Symmetric Inputs
Rong Ge
Rohith Kuditipudi
Zhize Li
Xiang Wang
OOD
MLT
28
57
0
16 Oct 2018
A Convergence Analysis of Gradient Descent for Deep Linear Neural
  Networks
A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks
Sanjeev Arora
Nadav Cohen
Noah Golowich
Wei Hu
16
280
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
33
1,251
0
04 Oct 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
Adding One Neuron Can Eliminate All Bad Local Minima
Adding One Neuron Can Eliminate All Bad Local Minima
Shiyu Liang
Ruoyu Sun
J. Lee
R. Srikant
29
89
0
22 May 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent
  Neural Network?
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
13
57
0
21 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with
  Overlaps
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
20
17
0
20 May 2018
End-to-end Learning of a Convolutional Neural Network via Deep Tensor
  Decomposition
End-to-end Learning of a Convolutional Neural Network via Deep Tensor Decomposition
Samet Oymak
Mahdi Soltanolkotabi
19
12
0
16 May 2018
The Global Optimization Geometry of Shallow Linear Neural Networks
The Global Optimization Geometry of Shallow Linear Neural Networks
Zhihui Zhu
Daniel Soudry
Yonina C. Eldar
M. Wakin
ODL
18
36
0
13 May 2018
Learning Compact Neural Networks with Regularization
Learning Compact Neural Networks with Regularization
Samet Oymak
MLT
35
39
0
05 Feb 2018
SGD Learns Over-parameterized Networks that Provably Generalize on
  Linearly Separable Data
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
37
276
0
27 Oct 2017
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1