ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.06181
  4. Cited By
On Nesting Monte Carlo Estimators

On Nesting Monte Carlo Estimators

18 September 2017
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
ArXivPDFHTML

Papers citing "On Nesting Monte Carlo Estimators"

29 / 29 papers shown
Title
Amortized Bayesian Experimental Design for Decision-Making
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
59
2
0
03 Jan 2025
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Deep Optimal Sensor Placement for Black Box Stochastic Simulations
Paula Cordero-Encinar
Tobias Schröder
P. Yatsyshin
Andrew Duncan
55
0
0
15 Oct 2024
Bayesian Experimental Design via Contrastive Diffusions
Bayesian Experimental Design via Contrastive Diffusions
Jacopo Iollo
Christophe Heinkelé
Pierre Alliez
Florence Forbes
35
0
0
15 Oct 2024
Does SAM dream of EIG? Characterizing Interactive Segmenter Performance
  using Expected Information Gain
Does SAM dream of EIG? Characterizing Interactive Segmenter Performance using Expected Information Gain
Kuan-I Chung
Daniel Moyer
VLM
38
0
0
24 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
59
6
0
08 Apr 2024
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev
  inequalities
Nonlinear Bayesian optimal experimental design using logarithmic Sobolev inequalities
Fengyi Li
Ayoub Belhadji
Youssef Marzouk
35
1
0
23 Feb 2024
Human-in-the-Loop Visual Re-ID for Population Size Estimation
Human-in-the-Loop Visual Re-ID for Population Size Estimation
Gustavo Pérez
Daniel Sheldon
Grant Van Horn
Subhransu Maji
36
0
0
08 Dec 2023
Amortised Experimental Design and Parameter Estimation for User Models
  of Pointing
Amortised Experimental Design and Parameter Estimation for User Models of Pointing
Antti Keurulainen
Isak Westerlund
Oskar Keurulainen
Andrew Howes
33
7
0
19 Jul 2023
Prediction-Oriented Bayesian Active Learning
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
44
29
0
17 Apr 2023
Modern Bayesian Experimental Design
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
37
78
0
28 Feb 2023
Optimal randomized multilevel Monte Carlo for repeatedly nested
  expectations
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
Yasa Syed
Guanyang Wang
21
6
0
10 Jan 2023
Bayesian model calibration for block copolymer self-assembly:
  Likelihood-free inference and expected information gain computation via
  measure transport
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
37
11
0
22 Jun 2022
Interventions, Where and How? Experimental Design for Causal Models at
  Scale
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
48
48
0
03 Mar 2022
Sequential Bayesian experimental designs via reinforcement learning
Sequential Bayesian experimental designs via reinforcement learning
Hikaru Asano
OffRL
18
0
0
14 Feb 2022
Implicit Deep Adaptive Design: Policy-Based Experimental Design without
  Likelihoods
Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods
Desi R. Ivanova
Adam Foster
Steven Kleinegesse
Michael U. Gutmann
Tom Rainforth
OffRL
21
46
0
03 Nov 2021
GaussED: A Probabilistic Programming Language for Sequential
  Experimental Design
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
42
1
0
15 Oct 2021
Test Distribution-Aware Active Learning: A Principled Approach Against
  Distribution Shift and Outliers
Test Distribution-Aware Active Learning: A Principled Approach Against Distribution Shift and Outliers
Andreas Kirsch
Tom Rainforth
Y. Gal
OOD
TTA
39
22
0
22 Jun 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
33
78
0
03 Mar 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
87
6
0
15 Jan 2021
An invitation to sequential Monte Carlo samplers
An invitation to sequential Monte Carlo samplers
Chenguang Dai
J. Heng
Pierre E. Jacob
N. Whiteley
60
65
0
23 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
26
19
0
10 Jul 2020
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
41
22
0
17 Sep 2019
Asymptotic Distributions and Rates of Convergence for Random Forests via
  Generalized U-statistics
Asymptotic Distributions and Rates of Convergence for Random Forests via Generalized U-statistics
Weiguang Peng
T. Coleman
L. Mentch
29
39
0
25 May 2019
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
24
12
0
04 Dec 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
35
196
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
39
31
0
20 Jul 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
34
197
0
13 Feb 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
45
684
0
15 Nov 2017
Stability of Noisy Metropolis-Hastings
Stability of Noisy Metropolis-Hastings
F. Medina-Aguayo
Anthony Lee
Gareth O. Roberts
67
41
0
24 Mar 2015
1