Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.06560
Cited By
Deep Reinforcement Learning that Matters
19 September 2017
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
D. Meger
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Reinforcement Learning that Matters"
50 / 316 papers shown
Title
Does BERT Make Any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings
Gregor Wiedemann
Steffen Remus
Avi Chawla
Chris Biemann
21
174
0
23 Sep 2019
Leveraging Human Guidance for Deep Reinforcement Learning Tasks
Ruohan Zhang
F. Torabi
L. Guan
D. Ballard
Peter Stone
11
87
0
21 Sep 2019
DECoVaC: Design of Experiments with Controlled Variability Components
Thomas Boquet
Laure Delisle
Denis Kochetkov
Nathan Schucher
Parmida Atighehchian
Boris N. Oreshkin
Julien Cornebise
22
1
0
21 Sep 2019
Learning to Learn and Predict: A Meta-Learning Approach for Multi-Label Classification
Jiawei Wu
Wenhan Xiong
William Yang Wang
18
69
0
09 Sep 2019
Is Deep Reinforcement Learning Really Superhuman on Atari? Leveling the playing field
Marin Toromanoff
É. Wirbel
Fabien Moutarde
OffRL
22
24
0
13 Aug 2019
Behaviour Suite for Reinforcement Learning
Ian Osband
Yotam Doron
Matteo Hessel
John Aslanides
Eren Sezener
...
Satinder Singh
Benjamin Van Roy
R. Sutton
David Silver
H. V. Hasselt
OffRL
24
178
0
09 Aug 2019
Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems
M. Lutter
Kim D. Listmann
Jan Peters
PINN
16
71
0
10 Jul 2019
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates
Ning Liu
Xiaolong Ma
Zhiyuan Xu
Yanzhi Wang
Jian Tang
Jieping Ye
35
183
0
06 Jul 2019
Co-training for Policy Learning
Jialin Song
Ravi Lanka
Yisong Yue
M. Ono
OffRL
8
19
0
03 Jul 2019
Hyp-RL : Hyperparameter Optimization by Reinforcement Learning
H. Jomaa
Josif Grabocka
Lars Schmidt-Thieme
23
65
0
27 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
22
108
0
25 Jun 2019
Modern Deep Reinforcement Learning Algorithms
Sergey Ivanov
A. Dýakonov
OffRL
21
38
0
24 Jun 2019
RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration
Brahma S. Pavse
F. Torabi
Josiah P. Hanna
Garrett A. Warnell
Peter Stone
19
33
0
18 Jun 2019
Exploiting the Sign of the Advantage Function to Learn Deterministic Policies in Continuous Domains
Matthieu Zimmer
Paul Weng
13
7
0
10 Jun 2019
An Empirical Study on Hyperparameters and their Interdependence for RL Generalization
Xingyou Song
Yilun Du
Jacob Jackson
AI4CE
19
8
0
02 Jun 2019
On Network Design Spaces for Visual Recognition
Ilija Radosavovic
Justin Johnson
Saining Xie
Wan-Yen Lo
Piotr Dollár
17
134
0
30 May 2019
REPLAB: A Reproducible Low-Cost Arm Benchmark Platform for Robotic Learning
Brian Yang
Jesse Zhang
Vitchyr H. Pong
Sergey Levine
Dinesh Jayaraman
14
37
0
17 May 2019
The Scientific Method in the Science of Machine Learning
Jessica Zosa Forde
Michela Paganini
24
35
0
24 Apr 2019
Differentiable Sampling with Flexible Reference Word Order for Neural Machine Translation
Weijia Xu
Xing Niu
Marine Carpuat
16
10
0
04 Apr 2019
Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without a Supercomputer
E. Beeching
Christian Wolf
J. Dibangoye
Olivier Simonin
OffRL
LRM
32
25
0
03 Apr 2019
Q-Learning for Continuous Actions with Cross-Entropy Guided Policies
Riley Simmons-Edler
Ben Eisner
E. Mitchell
Sebastian Seung
Daniel D. Lee
21
28
0
25 Mar 2019
Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics
Denis Steckelmacher
Hélène Plisnier
D. Roijers
A. Nowé
OffRL
18
17
0
11 Mar 2019
The AI Driving Olympics at NeurIPS 2018
J. Zilly
J. Tani
Breandan Considine
Bhairav Mehta
Andrea F. Daniele
...
R. Hristov
S. Mallya
Emilio Frazzoli
A. Censi
Liam Paull
16
14
0
06 Mar 2019
Efficient Reinforcement Learning for StarCraft by Abstract Forward Models and Transfer Learning
Ruo-Ze Liu
Haifeng Guo
Xiaozhong Ji
Yang Yu
Zhen-Jia Pang
Zitai Xiao
Yuzhou Wu
Tong Lu
OffRL
19
13
0
02 Mar 2019
Neural Packet Classification
Eric Liang
Hang Zhu
Xin Jin
Ion Stoica
OffRL
35
120
0
27 Feb 2019
Investigating Generalisation in Continuous Deep Reinforcement Learning
Chenyang Zhao
Olivier Sigaud
F. Stulp
Timothy M. Hospedales
OffRL
14
48
0
19 Feb 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Neural-encoding Human Experts' Domain Knowledge to Warm Start Reinforcement Learning
Andrew Silva
Matthew C. Gombolay
OffRL
19
20
0
15 Feb 2019
Ten ways to fool the masses with machine learning
F. Minhas
Amina Asif
Asa Ben-Hur
FedML
HAI
13
5
0
07 Jan 2019
Learning to Walk via Deep Reinforcement Learning
Tuomas Haarnoja
Sehoon Ha
Aurick Zhou
Jie Tan
George Tucker
Sergey Levine
29
433
0
26 Dec 2018
TD-Regularized Actor-Critic Methods
Simone Parisi
Voot Tangkaratt
Jan Peters
Mohammad Emtiyaz Khan
OffRL
14
31
0
19 Dec 2018
Dopamine: A Research Framework for Deep Reinforcement Learning
Pablo Samuel Castro
Subhodeep Moitra
Carles Gelada
Saurabh Kumar
Marc G. Bellemare
OffRL
17
276
0
14 Dec 2018
Distilling Information from a Flood: A Possibility for the Use of Meta-Analysis and Systematic Review in Machine Learning Research
Peter Henderson
Emma Brunskill
AI4CE
29
3
0
03 Dec 2018
A Closer Look at Deep Policy Gradients
Andrew Ilyas
Logan Engstrom
Shibani Santurkar
Dimitris Tsipras
Firdaus Janoos
Larry Rudolph
Aleksander Madry
22
50
0
06 Nov 2018
Assessing Generalization in Deep Reinforcement Learning
Charles Packer
Katelyn Gao
Jernej Kos
Philipp Krahenbuhl
V. Koltun
D. Song
OffRL
18
233
0
29 Oct 2018
RLgraph: Modular Computation Graphs for Deep Reinforcement Learning
Michael Schaarschmidt
Sven Mika
Kai Fricke
Eiko Yoneki
OffRL
23
5
0
21 Oct 2018
Learning Socially Appropriate Robot Approaching Behavior Toward Groups using Deep Reinforcement Learning
Yuan Gao
Fangkai Yang
Martin Frisk
Daniel Hernández
Christopher E. Peters
Ginevra Castellano
24
5
0
16 Oct 2018
A Survey and Critique of Multiagent Deep Reinforcement Learning
Pablo Hernandez-Leal
Bilal Kartal
Matthew E. Taylor
OffRL
32
550
0
12 Oct 2018
PPO-CMA: Proximal Policy Optimization with Covariance Matrix Adaptation
Perttu Hämäläinen
Amin Babadi
Xiaoxiao Ma
J. Lehtinen
29
62
0
05 Oct 2018
CEM-RL: Combining evolutionary and gradient-based methods for policy search
Aloïs Pourchot
Olivier Sigaud
22
159
0
02 Oct 2018
SmartChoices: Hybridizing Programming and Machine Learning
Victor Carbune
Thierry Coppey
A. Daryin
Thomas Deselaers
Nikhil Sarda
J. Yagnik
16
2
0
01 Oct 2018
Generalization and Regularization in DQN
Jesse Farebrother
Marlos C. Machado
Michael Bowling
25
203
0
29 Sep 2018
Deterministic Implementations for Reproducibility in Deep Reinforcement Learning
P. Nagarajan
Garrett A. Warnell
Peter Stone
12
51
0
15 Sep 2018
Improving Optimization Bounds using Machine Learning: Decision Diagrams meet Deep Reinforcement Learning
Quentin Cappart
Emmanuel Goutierre
David Bergman
Louis-Martin Rousseau
AI4CE
10
55
0
10 Sep 2018
How clever is the FiLM model, and how clever can it be?
A. Kuhnle
Huiyuan Xie
Ann A. Copestake
22
6
0
09 Sep 2018
Discriminator-Actor-Critic: Addressing Sample Inefficiency and Reward Bias in Adversarial Imitation Learning
Ilya Kostrikov
Kumar Krishna Agrawal
Debidatta Dwibedi
Sergey Levine
Jonathan Tompson
32
256
0
09 Sep 2018
A Study of Reinforcement Learning for Neural Machine Translation
Lijun Wu
Fei Tian
Tao Qin
Jianhuang Lai
Tie-Yan Liu
OffRL
27
182
0
27 Aug 2018
Policy Optimization as Wasserstein Gradient Flows
Ruiyi Zhang
Changyou Chen
Chunyuan Li
Lawrence Carin
14
66
0
09 Aug 2018
CIRL: Controllable Imitative Reinforcement Learning for Vision-based Self-driving
Xiaodan Liang
Tairui Wang
Luona Yang
Eric P. Xing
19
266
0
10 Jul 2018
Troubling Trends in Machine Learning Scholarship
Zachary Chase Lipton
Jacob Steinhardt
21
288
0
09 Jul 2018
Previous
1
2
3
4
5
6
7
Next